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Abstract

We give a simple sequent calculus presentation of R.B. Angell’s logic of
analytic containment, recently championed by Kit Fine as a plausible logic
of partial content.

1 Introduction
In Angell (1977, 1981, 1989) R.B. Angell introduced a logic whose conditional was
intended to represent a kind of analytic containment of the consequent in the
antecedant. Working in the general tradition due to William Parry (Parry (1933),
Parry (1972)) one of the more distinctive features of the logic Angell proposed was
in its invalidating the principle of disjunction introduction, sometimes also re-
ferred to as ‘Addition’:1

A→ (A∨ B).

As Angell notes, it is not at all clear that the meaning ofA∨B is contained in the
meaning of A. For example, if containment of meaning requires containment

1Other notable projects falling under the general umbrella of Parry-style treatments of ‘im-
plication as meaning containment’ are the paraconsistent implication of Deutsch (1984) and the
treatment of implication in the story semantics of Daniels (1986). �e logic of meaning contain-
ment in Brady (2006) has Addition as an axiom, and thus seems to fall afoul of the argument below
that this is not valid on the understanding of entailment as meaning containment.
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of ‘subject matters’ (in something like the sense of Yablo (2014)) then if the sub-
ject matter of B is not part of the subject matter of A then we will end up with
A∨ B being about something other than whatA is about, leading to a failure of
containment of meaning. One of the distinctive and interesting features of the
proposed logic is that, understanding the analytic containment of B in A as re-
quiring thatB be part of the content ofA, was that it provides a way of modelling
the desiderata thatA be part of the content ofA∧B, but thatA∨B shouldn’t be
part of the content ofA—desiderata which mean that we cannot understand par-
tial content simply in terms of classical logical consequence, this following from
a more general limitative result concerning partial content in (Fine, 2013, p.413).

Where Angell’s logic differs from those in the general tradition of Parry’s Ana-
lytic Implication concerns how the two logics treat statements which contain ‘im-
plicit tautologies’ (on which see (Angell, 1989, p.122)). In particular, Parry’s logic
validates the equivalence

((A∧ ¬A)∧ (B∨ ¬B))↔ ((A∨ ¬A)∧ (B∧ ¬B))

If we are reading ‘↔’ as analytic equivalence, then, loosely speaking, this tells us
that A being inconsistent and B having a truth value is the same as B being in-
consistent and A having a truth value. One can quite plausibly argue that these
two statements are not analytically equivalent, but at the very least for many ap-
plications of analytic containment what one is usually after is a more discerning
notion that one with consequences like this.

Appeals to analytic containment are quite natural in giving various philosoph-
ical analyses, and so it should be unsurprising that Angell’s logic has seen a num-
ber of interesting applications. On the more epistemic side of things it has been
used in Belnap (1979) to repair a fault in a particular account of hypothetical rea-
soning due to Nicholas Rescher; in Ferguson (2016) to model catastrophic faults
in Belnapian artificial reasoners—cases where a Belnapian computer experiences
a fault in retrieving the truth-value of a formula, where truth- and falsity-values
are stored at seperate ‘addresses’; and in Ferguson (2015) in connection to work
on epistemic interpretations of certain bilattices, where Angell’s logic turns out
to be the logic of ‘being at least believed’.

Perhaps one of the more prominant recent applications of Angell’s logic has
been to questions about the metaphysics of content and the logical structure of
metaphysical dependance. For example, in Fine (2016) has proposed that Angell’s
conditional is the correct formalisation of the notion of partial content, and is a
near relative of the logic of exact truthmaker containment. Similarly, in Correia
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(2010) it is proposed that the biconditional formulation of Angell’s logic (Angell’s
own preferred axiomatisation, as we will see in the next section) characterises
‘factual equivalence’ on a worldly conception of facts.2

It is clear, then, that understanding Angell’s logic is important to various projects
for understanding various metaphysical and semantic projects concerning truth-
makers and partial content, in addition to understanding its potential applica-
tions to hypothetical reasoning, and the modeling of certain kinds of artifical
agents. To this end it would be helpful if we had a detailed proof-theoretic anal-
ysis of this logic and its relatives. �is present paper is intended to provide the
beginnings of such an analysis. In section 2 I give a brief survey of existing ax-
iomatic proof systems for Angell’s logic, emphasising the similarity from a proof-
theoretic perspective between Angell’s logic and Anderson & Belnap’s logic of tau-
tological entailment, as a prelude to in section 3, presenting a simple sequent cal-
culus for Angell’s logic. We close in 4 by showing that this system is equivalent to
an axiomatic proof system for Angell’s logic due to Kit Fine.

2 Axiomatic Systems for Angell’s Logic
�roughout we will be concerned only with propositional languages.3 A truth-
functional formula is a formula built up from a denumerable supply p1,p2, . . . of
propositional variables using the connectives ∧, ∨, ¬. An equivalential formula is
a formula of the formA↔ BwhereA and B are truth-functional formulas, and
finally a containment formula is one of the formA → B whereA and B are truth-
functional formulas.

In giving a proof system for analytic containment we are immediately faced
with a choice of whether to axiomatise the set of all valid equivalential formulas
(and thus take↔ as our sole non-truth-functional primitive), or the set of all valid
containment formulas (taking→ as our sole non-truth-functional primitive). Kit

2Correia (2016) moves away from this claim, arguing that in fact a proper subsystem of Angell’s
logic, which involves dropping the distribution principle A ∨ (B ∧ C) ↔ (A ∨ B) ∧ (A ∨ C)
from Fine’sAC↔, should be understood as the correct logic of factual equivalence. Correia’s main
motivation here is that, as is shown in Lemma 4 of Fine (2016), against the background of the rest
of Angell’s logic, the theoremhood of this principle is, in a sense, equivalent to the admissibility
of the rule which takes us fromA↔ B to ¬A↔ ¬B.

3�roughout we will use uppercase Roman letters as schematic letters for arbitrary propo-
sitional formulas, and uppercase Greek letters for multisets of propositional formulas. We will
consider sequents to be pairs of multisets of formulas, and will use ‘�’ as our sequent separator,
writing the pair 〈Γ ,∆〉 as Γ � ∆.
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Fine, and Angell himself have favoured axiomatising the class of equivalential for-
mulas, while (like Correia) we will be concerned with dealing with containment
formulas. In our particular case this is because we are ultimately interested in (in
section 3) giving a sequent calculus where a sequentA1, . . . ,An � B1, . . . ,Bn is
to be interpreted as the containment formula (A1∧. . .∧An)→ (B1∨. . .∨Bn).
�ankfully, as Angell himself points out, we do not need to choose between these
two different choices of primitives, as we can defineA→ B in terms of the equiv-
alenceA ↔ (A ∧ B). �is gives us a way to move from talk of containment for-
mulas to talk of equivalential formulas. We can move in the opposite direction by
noting thatA↔ B is equivalent toA→ B and B→ A. It would be nice to have
a more systematic overview of the relationship between the class of containment
and equivalential formulas, but we will not detain ourselves with taking up such
an investigation here. Instead, let us begin our brief look at the extant proof sys-
tems for Angell’s logic by looking at the very succinct axiomatisation of the class
of all valid equivalential formulas given in (Angell, 1989, p.124), which we will call
AC1.

Angell’s Axiom system AC1.

Axioms

AC1. A↔ ¬¬A

AC2. A↔ (A∧A)

AC3. (A∧ B)↔ (B∧A)

AC4. A∧ (B∧ C)↔ (A∧ B)∧ C

AC5. A∨ (B∧ C)↔ (A∨ B)∧ (A∨ C)

Rules

A↔ B C(A)

C(B)
R1.

where C(B) is a formula just like C(A) but with some number of istances ofA in C(A)
replaced by B.

�is axiomatisation is very economical, but as a direct result rather cumber-
some to work with. Given that it is also concerned with equivalential formulas,
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we will investigate it no further, preferring instead to follow on to look at the ax-
iomatisation, due to (Correia, 2004, p.89), of the containment formulas of Angell’s
logic which we will call AC2.

Correia’s Axiom system AC2.

Axioms

AC1a A→ ¬¬A

AC1b ¬¬A→ A

AC2 A→ A∧A

AC3 A∧ B→ A

AC4 A∨ B→ B∨A

AC5a A∨ (B∨ C)→ (A∨ B)∨ C

AC5b (A∨ B)∨ C→ A∨ (B∨ C)

AC6a A∨ (B∧ C)→ (A∨ B)∧ (A∨ C)

AC6b (A∨ B)∧ (A∨ C)→ A∨ (B∧ C)

Rules

A→ B B→ A
¬A→ ¬B

AC7 A→ B
A∨ C→ B∨ C

AC8 A→ B B→ C
A→ C

AC9

�is axiomatisation is much more revealing, although it is still rather cum-
bersome in many ways. What is particularly revealing about this axiomatisation
is that we can begin to see the strong affinity between Angell’s logic and Anderson
and Belnap’s logic Efde (henceforth, simply FDE) of tautological entailments. In
particular this axiomatisation is very similar to that proposed in (Anderson and
Belnap, 1975, p.158) for FDE, essentially resulting from this system by removing
the disjunction axioms (i.e. the principle of Addition) with ‘minimal mutilation’,
adding in by hand the distribution principal AC6 (which is provable in the pre-
sentation of FDE given by Anderson and Belnap). �is axiomatisation has the
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disadvantage of making use of an awkward contraposition rule AC7, which hides
the de Morgan behaviour of Angell’s logic.4

To this end we will ultimately work with the axiom system for containment
formulas described in (Fine, 2016, p.201–202). �is system builds off Fine’s own
axiomatic system, given in terms of equivalence formulas, by first noting that
A ↔ B ought to entail A → B and B → A, and then requiring that we can
defineA→ B asA↔ (A∧B), which means that we need to also add the axiom
(A ∧ B) → A (as (A ∧ B) ↔ (A ∧ B) ∧ A can easily be seen to be a theorem
of AC1). Following Fine we will call this system AC→. Fine’s description of this
system includes some redundancies, such as the fact that we only need to posit
A→ A∧A as an axiom and not its converse, as this follows fromA∧B→ A—
the distinctive new axiom of AC→ as compared to Fine’s ownAC↔. We give the
full system below, following the policy of using Fine’s labels for the corresponding
equivalential principles, splittingX intoXa andXb.

Fine’s Axiom system AC→.

Axioms
E1a. A→ ¬¬A

E1b. ¬¬A→ A

E2. A→ A∧A

E3. A∧ B→ B∧A

E4a. A∧ (B∧ C)→ (A∧ B)∧ C

E4b. (A∧ B)∧ C→ A∧ (B∧ C)

E5a. A→ A∨A

E5b. A∨A→ A

E6. A∨ B→ B∨A

E7a. A∨ (B∨ C)→ (A∨ B)∨ C

E7b. (A∨ B)∨ C→ A∨ (B∨ C)

E8a. ¬(A∧ B)→ ¬A∨ ¬B

E8b. ¬A∨ ¬B→ ¬(A∧ B)

E9a. ¬(A∨ B)→ ¬A∧ ¬B

E9b. ¬A∧ ¬B→ ¬(A∨ B)

E10a. A∧ (B∨ C)→ (A∧ B)∨ (A∧ C)

E10b. (A∧ B)∨ (A∧ C)→ A∧ (B∨ C)

E11a. A∨ (B∧ C)→ (A∨ B)∧ (A∨ C)

E11b. (A∨ B)∧ (A∨ C)→ A∨ (B∧ C)

E12. A∧ B→ B

Rules
A→ B B→ C

A→ C
(E13) A→ B

A∧ C→ B∧ C
(E14) A→ B

A∨ C→ B∨ C
(E15)

4One might wonder whether we can dispense with the A → B premise of AC7, giving us
the standard contraposition rule. �is rule does not preserve validity in Angell’s logic, though.
In particular it will take us from the valid (p ∧ q) → p to the invalid ¬p → ¬(p ∧ q), the
latter (after some De Morgan maneuvers) being an instance of the invalid principle of Addition.
Making use of notation to be introduced in the next section, the effect of the other premise is to
force t(A) = t(B).
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Again the similarity to axiom systems for FDE should be apparent, the main
difference here being that we have traded in the contraposition rule for the full
collection of de Morgan principles. With an axiomatic presentation of Angell’s
logic in hand let us turn now to our sequent calculus.

3 A Simple Sequent Calculus for Angell’s Logic
Fine (2016) is predominately concerned with providing a number of different se-
mantic treatments of Angell’s logic, with the particular aim of highlighting how
the logic naturally arises out of considerations of his truthmaker semantics5. Of
particular interest to us here is the characterisation of AC→ which Fine gives in
terms of a pair of four-valued logics. One of these is the familiar semantic conse-
quence relation for FDE, the other a slightly more exotic four-valued logic rem-
iniscient of that determined by the matrices given in Figure 8 of Humberstone
(2003, p.640).6 �inking of the logic semantically in terms of this pair of matrices
is rather awkward, and provides little insight into the nature of Angell’s logic. A
more informative way of proceeding is via the notion of what Fine calls the valence
of a formula.

Definition 3.1. Let us define valence, both positive and negative, of an occurence
of a sentence letter p in a formulaA recursively as follows.

• p occurs positively in p

• If p occurs positively (negatively) inA, then it occurs negatively (positively)
in ¬A

• If p occurs positively (negatively) inA orB, then it occurs positively (nega-
tively) inA∧ B andA∨ B

5Fine’s primary published papers on truthmaker semantics are Fine (2014) and Fine (2016) both
of which, along with the early inspiration for the approach van Fraassen (1969), should be con-
sulted for more information on that particular, very fertile, approach to semantic content.

6�e four-valued matrices in Figure 8 of Humberstone (2003, p.640) constitute a matrix se-
mantics for the notion of ‘partial truth’ which Fine discusses just after �eorem 27 (the matrices
there being the ‘truth tables along these lines’ mentioned by Fine), with the proviso that we re-
place the table for ∧ with a duplicate of that given for ∨. We will then have that the consequence
relation semantically determined by the four-valued matrices given there is such that whenever
A ` Cwe have thatA preserves the valence ofC. For present purposes it is much simpler to work
directly with the notion of preservation of valence, though, as we will see below.
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Let us say that a sequent Γ�∆ is valencepreserving if every sentence letter which
occurs positively (respectively negatively) in some formula in Γ occurs positively
(resp. negatively) in some formula in∆; and that it is valence anti-preserving if every
sentence letter which occurs positively (resp. negatively) in some formula in ∆
occurs positively (resp. negatively) in some formula in Γ . �e logic of ‘partial-
truth preservation’ mentioned above can then be shown to be characterised by
the set of all sequents which are valence preserving.

As a useful shorthand in what follows we will make use of the following func-
tion t(·).

t(A) = {p|p occurs under the scope of an even number of negations inA}∪
{¬p|p occurs under the scope of an odd number of negations inA}

Intuively we can think of t(A) as being the ‘subject matter’ of A (or perhaps
more mnemonically the ‘truthmaker content ofA’). We can then say that valence
is anti-preserved fromA to B (meaning by this that the sequentA � B is valence
anti-preserving) if t(B) ⊆ t(A), and thus think of valence anti-preservation as
requiring that the subject matter of B is contained in the subject matter of A.
Now we have enough tools in hand in order to give a particular semantic charac-
terisation of the first-degree fragment of Angell’s logic AC, due independantly to
Kit Fine and �omas Ferguson, which we will be concerned with below.

Proposition 3.2 (Fine (2016, p.223), Ferguson (2016, p.1630)). A → C is a theorem
ofAC→ iffA�C isFDE-valid and valence anti-preserving. Equivalently, given the above,
iffA `FDE C and t(C) ⊆ t(A).

�e present characterisation of AC→ gives us the materials we will use to con-
struct our sequent calculus.

3.1 �e Sequent Calculus –GAC

�e following sequent calculus builds off the structurally absorbed sequent calcu-
lus for FDE given in Pynko (1995, p.446–447). �e main ingredient in our sequent
calculus, which we will call GAC is a restriction on what counts as an initial se-
quent (which is, in a sense, equivalent to a restriction on the rule of weakening).
From here on let us write t(Γ) for

⋃
A∈Γ

t(A). �e sequent calculusGAC for Angell’s

logic has the following initial sequents and rules:
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Initial Sequents

[Initial+] Γ ,p � p,∆where t(∆,p) ⊆ t(Γ ,p).

[Initial−] Γ ,¬p � ¬p,∆where t(∆,¬p) ⊆ t(Γ ,¬p).

Double Negation

Γ ,A � ∆
Γ ,¬¬A � ∆

[DNL]
Γ �A,∆
Γ � ¬¬A,∆

[DNR]

Propositional Rules

Γ ,A,B � ∆
Γ ,A∧ B � ∆

[∧L]
Γ �A,∆ Γ � B,∆
Γ �A∧ B,∆

[∧R]

Γ ,A � ∆ Γ ,B � ∆
Γ ,A∨ B � ∆

[∨L]
Γ �A,B,∆
Γ �A∨ B,∆

[∨R]

‘De Morgan’ Rules

Γ ,¬A � ∆ Γ ,¬B � ∆
Γ ,¬(A∧ B) � ∆

[¬∧L]
Γ � ¬A,¬B,∆
Γ � ¬(A∧ B),∆

[¬∧R]

Γ ,¬A,¬B � ∆
Γ ,¬(A∨ B) � ∆

[¬∨L]
Γ � ¬A,∆ Γ � ¬B,∆
Γ � ¬(A∨ B),∆

[¬∨R]

Structural Rules

Γ ,A,A � ∆
Γ ,A � ∆

[WL]
Γ � ∆,A,A
Γ � ∆,A

[WR]

Note that if we were to let our initial sequents instead be of the form Γ ,A �
A,∆ we would end up with essentially Pynko’s sequent calculus GB. �rough-
out we will occasionally refer ambiguiously to the initial sequents [Initial+] and
[Initial−] of GAC as simply [Initial]. �e reason we refer to the rules [¬∧] and
[¬∨] as ‘de Morgan rules’ is that it is the presence of these rules which allow us
to derive the usual de Morgan laws in the absence of either the standard ‘flip-
flop’ rules for negation, or a global rule of contraposition (taking us from Γ �∆ to
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¬∆ � ¬Γ , where ¬Γ = {¬A|A ∈ Γ } as normal). �is has the dual advantage of
being ‘local’, allowing us to just have standard left- and right-insertion rules for
the various connectives and negated connectives, as well as aligning more closely
with our chosen axiom system AC→.

�e following proposition, in conjunction with Proposition 3.2, demonstrates
that the present system captures all the validities of Angell’s logic.

Proposition 3.3. �e rules of GAC all preserve the property of anti-preserving valence.
�at is to say, if all of the premise sequents Γi � ∆i have the property that t(∆i) ⊆ t(Γi)
then the conclusion of that rule also has that property.

Proof. We proceed by cases, supposing that the premise sequents of a rule sat-
isfy the condition, in order to show that the conclusion sequent of that rule also
satisfies the condition.

• [¬¬] Given that t(¬A) = {¬p|p ∈ t(A)}, it is clear that t(¬¬A) = t(A),
and so it is clear that this rule preserves the property of anti-preserving va-
lence.

• [∧] and [∨] For the case of the one premise rules it is easy to see that, as
t(A ∧ B) = t(A ∨ B) = t(A) ∪ t(B) that if the premise sequent anti-
preserves valence then so does the conclusion sequent. For the cases of the
two premise rules, [∧R] to pick the more awkward case, that if t(A,∆) ⊆
t(Γ) and t(B,∆) ⊆ t(Γ) then t(A∧ B,∆) = t(A,∆) ∪ t(B,∆) is a subset
of t(Γ) as desired.

• [¬∧] and [¬∨] Similar to the previous case.

• [W] �e case for the rules [WL] and [WR] is trivial, as t(A, Γ) = t(A,A, Γ),
and likewise t(A,∆) = t(A,A,∆).

Corollary 3.4. If a sequent Γ � ∆ is provable inGAC then the sequent anti-preserves va-
lence.

Proof. By induction on the length of derivations, noting for the basis case that all
of our Initial sequents have the property, and using Proposition 3.3 in the induc-
tive step.
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Note that by the above corollary and the admissibility of Cut in GAC (proved
in the appendix) that it follows that [Cut] also preserves the property of anti-
preserving valence.

From Corollary 3.4 it is quite clear that if A → B is valid in AC→ then the
sequentA � B is valid in GAC. To prove the converse of this implication we will
show that whenever a sequentA � B is provable in GAC thenA → B is valid in
AC→. Prior to doing this, though, it will be helpful to prove some proof-theoretic
lemmata.

3.2 Some Proof-�eoretical Lemmata
�roughout we will be lax concerning association and ordering of conjuncts and
disjuncts, occasionally flagging where such operations need to a attended to as
needed.

�eorem 3.5. �e rule of cut

Γ � ∆,A A, Γ ′ � ∆ ′

Γ , Γ ′ � ∆,∆ ′
[Cut]

is admissible inGAC.

�e proof of this theorem can be found in the appendix of the present paper.

�eorem 3.6. �e following rules are admissible inGAC

Γ � ∆
Γ � ∆,A

[KL]†
Γ � ∆
Γ ,A � ∆

[KR]

(†) with the proviso that t(A) ⊆ t(Γ).

Proof. Suppose that we have a derivation D of heightn of Γ � ∆. Adding anA to
the left hand side of all the sequents in D will give us a derivation of Γ ,A � ∆ of
the same length. Similarly, if we have t(A) ⊆ t(Γ) then we can add Γ to the LHS
andA to the RHS of all the sequents in D, the side condition guaranteeing that
we still have valid instances of [Initial]. �is will result in a derivation D∗ whose
endsequent is Γ , Γ�∆,A. We can then apply |Γ |-many applications of contraction
in order to conclude Γ � ∆,A, as desired.7

7�is means, unfortunately, that we do not have height-preserving admissibility, but we do
have a precise upper bound on the height of the new proof–namely the height of the initial proof
+ |Γ |.
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Given the admissibility of this rule, it will be helpful to use this rule to derive
the following result.8

Definition 3.7. Given a formula A, let the de Morgan Complexity dmc(A) be de-
fined as follows.

• dmc(p) = 0

• dmc(¬p) = 0

• dmc(A∧ B) = dmc(¬(A∧ B)) = 1 + dmc(A) + dmc(B)

• dmc(A∨ B) = dmc(¬(A∨ B)) = 1 + dmc(A) + dmc(B)

• dmc(¬¬A) = 1 + dmc(A)

In showing that our sequent calculus GAC and Fine’s system AC→ are equiv-
alent it will be helpful to make use of a slight variant of the system GAC which
restricts the available initial sequents even further.

Definition 3.8. Let the systemG−
AC result from replacing from replacing [Initial+]

and [Initial−] in GAC with [LiteralInitial].

[LiteralInitial] q∗1 , . . . ,q∗m,p∗1 , . . . ,p∗n � p∗1 , . . . ,p∗n

where each p∗i ,q∗i are literals.
8�e admissibility of [KL] and [KR] also allows us to show that we could equally well have used

context independent rather than context sharing operational rules. For example anything we can
prove using [¬ ∧ L] we can also prove using:

Γ ,¬A � ∆ Γ ′,¬B � ∆ ′

Γ , Γ ′,¬(A∧ B) � ∆,∆ ′
[¬∧L∗]

by just contracting the duplicated occurences of Γ and∆. Similarly, we can derive [¬∧L∗] inGAC
as follows:

Γ ,¬A � ∆
Γ , Γ ′,¬(A∧ B),¬A � ∆

[KL]

Γ , Γ ′,¬(A∧ B),¬A � ∆,∆ ′
[KR]

Γ ′,¬B � ∆ ′

Γ , Γ ′,¬(A∧ B),¬B � ∆ ′
[KL]

Γ , Γ ′,¬(A∧ B),¬B � ∆,∆ ′
[KR]

Γ , Γ ′,¬(A∧ B),¬(A∧ B) � ∆,∆ ′
[¬∧L]

Γ , Γ ′,¬(A∧ B) � ∆,∆ ′
[WL]

Note that, in the case of multi-premise rules which introduce connectives on the left we have to
weaken in the formula which we are about to introduce in order to ensure that we can apply [KR].
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Lemma 3.9. Any sequent that is provable inGAC is provable in the systemG−
AC.

Proof. Suppose that we have an instance of [Initial]

Γ ,p � p,∆

where t(∆) ⊆ t(Γ ,p). What we will first show is that we can replace ∆ with
a set of literals. To do this we proceed by induction on the sum of the de Morgan
complexities of formulas in∆. If this is zero, then every formula in∆ is a literal, as
desired. Now suppose that the result holds for a summed De Morgan complexity
of6 n, and suppose that our instance of [Initial] is of one of the following forms
(all other cases being similar to these)

(i) Γ ,p � p,∆,A∨ B; (ii) Γ ,p � p,∆,A∧ B; (iii) Γ ,p � p,∆,¬¬A

where in all cases the RHS of the sequent is of De Morgan complexity n + 1. In
each case we can derive each of these instances of [Initial] from ones whose RHS
of of lower De Morgan complexity, as follows:

(i)
Γ ,p � p,∆,A,B
Γ ,p � p,∆,A∨ B

(ii)
Γ ,p � p,∆,A Γ ,p � p,∆,B

Γ ,p � p,∆,A∧ B
(iii)

Γ ,p � p,∆,A
Γ ,p � p,∆,¬¬A

Given that the upper sequents all have RHSs of at least one lower De Morgan
complexity, by the induction hypothesis it follows that they can be derived from
instances of initial where∆ contains only literals.

From this it follows that we can replace all instances of [Initial]with instances
of the following sequent schemata.

Γ ,p � p,p∗1 , . . . ,p∗n.

Now all that needs to be shown is that we can replace Γ with a set of literals. Again
we proceed by induction on the sum of the de Morgan complexities of formulas
in Γ . If this is zero, then every formula in Γ is a literal, as desired. Now suppose
that the result holds for a summed De Morgan complexity of 6 n, and suppose
that our instance of [Initial] is of one of the following forms (all other cases being
similar to these)

(i ′) Γ ,A∧B,p� p,∆; (ii ′) Γ ,A∨B,p� p,∆; (iii ′) Γ ,¬¬A,p� p,∆
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Each of these cases can be derived from sequents of lower De Morgan complexity
as follows.

(i ′)
Γ ,A,B � p∗1 , . . . ,p∗n
Γ ,A∧ B � p∗1 , . . . ,p∗n

[∧L]

(ii ′)

Γ ,A � q∗1 , . . . ,q∗m
Γ ,A∨ B,A � q∗1 , . . . ,q∗m

[KL]

Γ ,A∨ B,A � p∗1 , . . . ,p∗n
[KR]

Γ ,B � r∗1 , . . . , r∗k
Γ ,A∨ B,B � r∗1 , . . . , r∗k

[KL]

Γ ,A∨ B,B � p∗1 , . . . ,p∗n
[KR]

Γ ,A∨ B,A∨ B � p∗1 , . . . ,p∗n
[∨L]

Γ ,A∨ B � p∗1 , . . . ,p∗n
[WL]

where {q∗1 , . . . ,q∗m} = t(A, Γ) ∩ {p∗1 , . . . ,p∗n} and {r∗1 , . . . , r∗k} = t(B, Γ) ∩
{p∗1 , . . . ,p∗n}

(iii ′)
Γ ,A,p � p,∆
Γ ,¬¬A,p � p,∆

[DNL]

4 Adequacy
In order to show that GAC is equivalent to AC→ it will be helpful to appeal to the
following derived rules of AC→.

Lemma 4.1. �e following rules are derivable inAC→:

A→ B C→ D
(A∧ C)→ (B∧D)

R1
A→ B

A∧ C→ B∨ C
R2

A→ B C→ D
(A∨ C)→ (B∨D)

R3

Proof. We begin by deriving R1

A→ B
(A∧ C)→ (B∧ C)

(E14)

(B∧ C)→ (C∧ B)
(E3) C→ D

(C∧ B)→ (D∧ B)
(E14)

(B∧ C)→ (D∧ B)
(E13)

(D∧ B)→ (B∧D)
(E3)

(B∧ C)→ (B∧D)
(E13)

(A∧ C)→ (B∧D)
(E13)

We next derive R3 so that we can use it in deriving R2.
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A→ B
(A∨ C)→ (B∨ C)

(E15)

(B∨ C)→ (C∨ B)
(E3) C→ D

(C∨ B)→ (D∨ B)
(E15)

(B∨ C)→ (D∨ B)
(E13)

(D∨ B)→ (B∨D)
(E3)

(B∨ C)→ (B∨D)
(E13)

(A∨ C)→ (B∨D)
(E13)

Finally we can make use of R2 in order to derive R3

(A∧ C)∨ (A∧ C)→ A∧ C
E5a

A→ B
A∧ C→ B∧ C

(E14)
B∧ C→ B

(E12)

A∧ C→ B
(E13)

A∧ C→ C
(E12)

(A∧ C)∨ (A∧ C)→ B∨ C
R3

A∧ C→ B∨ C
(E13)

As the reader will note the proofs that witness the derivability of these rules
in AC→ are made rather tiresome by the fact that the rules (E14) and (E15) only
insert their new conjunct/disjunct on the right, while we will have occasion below
to want to insert additional conjunct/disjunct on the left. To make things easier
on the reader we will henceforth make use of the following two derived rules of
AC→.

A→ B
(C∧A)→ (C∧ B)

(E14)l A→ B
(C∨A)→ (C∨ B)

(E15)l

Instances of these rules are, of course, derivable by applying (E15), and then
applying (E13) to the result along with an appropriate instance of (E3).

What we will now show is that if a sequent Γ � ∆ is provable in GAC−, then∧
Γ →

∨
∆ is provable in AC→, and so given that Γ � ∆ is provable in G−

AC iff
Γ � ∆ is provable in GAC, it will follow that provability in GAC and provability in
AC→ coincide.

�eorem 4.2. Suppose that Γ � ∆ is provable inG−
AC. �en the formula

∧
Γ →

∨
∆ is

provable inAC→.

Proof. By induction on the length of derivations in G−
AC.

Basis: Suppose that Γ � ∆ is an instance of [Literal − Initial], that is to say
we have:

q∗1 , . . . ,q∗m,p∗1 , . . . ,p∗n � p∗1 , . . . ,p∗n,

15



In order to prove this we first begin with p∗n → p∗n, which can easily be proved in
AC→. We then repeatedly apply R2, reassociating as required, starting with this
until we have

(p∗1 ∧ . . . ∧ p∗n)→ (p∗1 ∨ . . . ∨ p∗n)

We can now appeal to (E12) and (E13) as follows:

(q∗1 ∧ . . . ∧ q∗m)∧ (p∗1 ∧ . . . ∧ p∗n)→ p∗1 ∧ . . . ∧ p∗n
(E12)

(p∗1 ∧ . . . ∧ p∗n)→ (p∗1 ∨ . . . ∨ p∗n)
q∗1 ∧ . . . ∧ q∗m ∧ p∗1 ∧ . . . ∧ p∗n → p∗1 ∨ . . . ∨ p∗n

(E13)

Inductive Hypothesis: For all proofs of sequents Γ ′ �∆ ′ of length 6 nwe have
that

∧
Γ ′ →

∨
∆ ′ is provable in AC→.

Inductive Step: We give a representative sample of cases. �roughout we will
write γ for

∧
Γ and δ for

∨
∆ in the interests of brevity and clarity.

[DNL] Suppose that we have a derivation of length 6 n of the sequent Γ ,A � ∆,
and wish to apply the rule [DNL] to derive the sequent Γ ,¬¬A �∆. By the
inductive hypothesis it follows that γ ∧ A → δ is provable in AC→. We
derive γ∧ ¬¬A→ δ from this as follows

¬¬A→ A
(E1b)

γ∧ ¬¬A→ γ∧A
(E14)l

γ∧A→ δ

γ∧ ¬¬A→ δ
(E13)

[∧L] Suppose that we have a derivation of length 6 n of the sequent Γ ,A,B�∆
and wish to apply the rule [∧L] to derive the sequent Γ ,A∧B�∆. By the in-
ductive hypothesis it follows thatγ∧A∧B→ δ is provable in AC→, and so
the desired sequent follows by appropriate re-association (i.e. applications
of (E4a) and (E4b)).

[∨L] Suppose that we have a derivation of length6 n of the sequent Γ ,A�∆ and
one of length 6 n of the sequent Γ ,B � ∆ and wish to apply the rule [∨L]
to derive the sequent Γ ,A ∨ B � ∆. By the induction hypothesis it follows
that we have proofs in AC→ of γ∧A→ δ and γ∧ B→ δ.

γ∧ (A∨ B)→ (γ∧A)∨ (γ∧ B)
(E10a)

γ∧A→ δ γ∧ B→ δ

(γ∧A)∨ (γ∧ B)→ δ∨ δ
R3

γ∧ (A∨ B)→ δ∨ δ
(E13)

δ∨ δ→ δ
(E5b)

γ∧ (A∨ B)→ δ
(E13)
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[¬ ∧ L] Suppose that we have a derivation of length 6 n of the sequent Γ ,¬A � ∆
and one of length 6 n of the sequent Γ ,¬B � ∆ and wish to apply the rule
[¬∧L] to derive the sequent Γ ,¬(A∧B)�∆. By the induction hypothesis
it follows that we have proofs in AC→ of γ∧ ¬A→ δ and γ∧ ¬B→ δ.

¬(A∧ B)→ (¬A∨ ¬B)
(E8a)

γ∧ ¬(A∧ B)→ γ∧ (¬A∨ ¬B)
(E14)l

γ∧ (¬A∨ ¬B)→ (γ∧ ¬A)∨ (γ∧ ¬B)
(E10a)

γ∧ ¬A→ δ γ∧ ¬B→ δ

(γ∧ ¬A)∨ (γ∧ ¬B)→ δ∨ δ
R3

γ∧ (¬A∨ ¬B)→ δ∨ δ
(E13)

δ∨ δ→ δ

γ∧ (¬A∨ ¬B)→ δ
(E13)

γ∧ ¬(A∧ B)→ δ
(E13)

[∧R] Suppose that we have a derivation of length6 n of the sequent Γ�∆,A and
one of length 6 n of the sequent Γ � ∆,B and wish to apply the rule [∧R]
to derive the sequent Γ � ∆,A ∧ B. By the induction hypothesis it follows
that we have proofs in AC→ of γ→ δ∨A and γ→ δ∨ B.

γ∧ γ→ γ
(E12)

γ→ δ∨A γ→ δ∨ B

γ∧ γ→ (δ∨A)∧ (δ∨ B)
R1

γ→ (δ∨A)∧ (δ∨ B)
(R13)

(δ∨A)∧ (δ∨ B)→ δ∨ (A∧ B)
(E11b)

γ→ δ∨ (A∧ B)
(R13)

[¬ ∨ L] Suppose that we have a derivation of length6 n of the sequent Γ ,¬A,¬B�
∆ and wish to apply the rule [¬∨L] to derive the sequent Γ ,¬(A∨B)�∆.
By the induction hypothesis we have that the formula γ ∧ ¬A ∧ ¬B →
δ is derivable in AC→. By re-association, then, we can derive the sequent
γ∧ (¬A∧¬B)→ δ, and the using (E13) and (E14) applied to an instance
of ¬(A ∨ B) → (¬A ∧ ¬B) in a similar way to that used above, derive
γ∧ ¬(A∨ B)→ δ as desired.

[WL] Suppose that we have a derivation of length 6 n of the sequent Γ ,A,A�∆
and we wish to apply [WL] to derive the sequent Γ ,A�∆. By the induction
hypothesis we have that the formula γ ∧ A ∧ A → δ is derivable in AC→.
We can derive our conclusion as follows.

A→ A∧A
(E2)

γ∧A→ γ∧A∧A
(E14)l

γ∧A∧A→ δ

γ∧A→ δ
(E13)

[WR] Suppose that we have a derivation of length 6 n of the sequent Γ �∆,A,A
and we wish to apply [WR] to derive the sequent Γ �∆,A. By the induction
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hypothesis we have that the formula γ → δ ∨ A ∨ A is derivable in AC→.
We can derive our conclusion as follows.

γ→ δ∨A∨A
A∨A→ A

(E5b)

δ∨A∨A→ δ∨A
(E15)l

γ→ δ∨A
(E13)

5 Conclusion
Here we have provided a simple cut-free sequent calculus for Angell’s logic of ana-
lytic containment, making explicit the logic’s strong resemblance to FDE and the
importance of the valence anti-preservation condition. One opportunity which
the present approach to thinking about Angell’s logic opens up is to use the tech-
nique we have used here—restricting initial sequents and showing that rules anti-
preserve valence in the appropriate way—in order to given an account of partial
content for more expressive langauges. For example, how should we think about
partial content for first-order languages? An obvious tactic for pursuing this is
to decide what t(∀xFx) is to be, and then use this information, along with which
quantificational inferences are valid in first-order FDE to determine the logic of
partial content for first-order langauges. One plausible treatment of t(∀xA(x)) is
to have it consist of t applied to every instance ofA(x). �is proposal, an analogue
of Fine’s second proposal in (Fine, 1986, p.178), suggests the following infinitary,
rules for the quantificational extension of GAC:

Γ � ∆,A(a1), . . . ,A(an), . . .
Γ � ∆,∀xA(x)

A(t), Γ � ∆
∀xA(x), Γ � ∆

�e main intuition driving these rules (which is on the surface of a very similar
nature to those motivating the grounding conditions for the quantifiers given in
Fine (2012)), is that any instanceA(t) ought to be part of the content of ∀xA(x),
while ∀xA(x) ought only be part of the content of the collection of all possible
instances ofA(x) (perhaps following discussions in (Fine, 2012, p.61), along with
a ‘totality’ clause). One potential problem with this account is that, if knowing a
statement requires knowing its content, then this appears to suggest that know-
ing a universally quantified claim requires possession of names for all the objects
int he domain of the quantifier. We will leave further investigation of what the
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best treatment of partial content for quantificational logic is for another occa-
sion, though.

I’d like to thank the audience at the 2016 Australasian Association for Logic
concference in Melbourne, as well as Lloyd Humberstone, Johannes Korbmacher,
Dave Ripley, and Shawn Standefer for helpful discussions of this material. A spe-
cial thanks is due to an anonymous referee for this journal who provided a number
of extremely helpful comments.
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6 Appendix: Cut Elimination
�e purpose of this appendix is to show that the rule of cut

Γ � ∆,A A, Γ ′ � ∆ ′

Γ , Γ ′ � ∆,∆ ′
[Cut]

is admissible in GAC. Despite the way in which we have presented our se-
quent calculus, we cannot show the contraction is height-preserving admissible
in GAC, and as a result we cannot use a cut-elimination proof in the style of Dra-
galin (1988); Negri and von Plato (2001). Moreover we do not have an unrestricted
rule of weakening, and so cannot use a standard mix-elimination proof. Instead,
we will use a variant of the mix rule, called ‘intelligent-mix’ in (Paoli, 2002, p.97),
and show how to eliminate all instances of this rule. Intelligent Mix, or [IMix], is
the rule

Γ � ∆,An Am, Γ ′ � ∆ ′

Γ , Γ ′ � ∆,∆ ′
[IMix],A

wheren,m > 1 and other occurences ofA, the intmix formula, may appear in
∆ and Γ ′.9 In particular what we will show is that if a sequent is provable inGAC+
[IMix] (henceforth GimAC) then it is provable in GAC. �is has as a consequence
that Cut is eliminable in GAC + [Cut], as [IMix] and [Cut] are interderivable
rules in our system, [IMix]being derivable from [Cut]as shown below, and [Cut]
simply being the special case of [IMix] wheren = m = 1.

Γ � ∆,An

Γ � ∆,A
[WR]n

Am, Γ ′ � ∆ ′

A, Γ ′ � ∆ ′
[WL]m

Γ , Γ ′ � ∆,∆ ′
[Cut]

9 In (Troelstra and Schwichtenberg, 2000, p.82) this rule is calledMulticut, and it appears to be
suggested that this is Gentzen’s rule of Mix. Gentzen’s rule, though, does not allow for other occur-
rences of the removed formula to be present in the conclusion sequent, removing all occurences
of the principal formula, rather than merely some of them.
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Here we will largely follow the proof alluded to in (Paoli, 2002, p.97–98), with
the obvious modifications made for the present system. Before getting to the cen-
tral proof, though, we will first need a few preliminary definitions (all of which are
analogues of those give in (Paoli, 2002, p.88–90)).

Definition 6.1. A derivationD inGimAC is called an intmix proof iff it contains a sin-
gle application of [IMix], whose conclusion is the endsequent of the derivation,
and is called a intmix free proof if it contains no application of [IMix].

Proposition 6.2 (Circumscription of Cut Elimination). If in GimAC any intmix proof
can be transformed into an intmix free proof of the same sequent, then any arbitrary proof
can be transformed into an intmix free proof.

Proof. A minor modification of the proof of Proposition 3.2 from (Paoli, 2002,
p.89)

Definition 6.3. Let D be a intmix proof whose final inference is

Γ � ∆,An Am, Γ ′ � ∆ ′

Γ , Γ ′− � ∆−,∆ ′
[IntMix],A

�e rank of a sequent S inD, rD(S) is given as follows.

• IfS belongs to a subproof ofD ′ orDwhich has Γ �∆,An as its endsequent,
then rD(S) is one less the maximal length of of an upward path of sequents
S1, . . . ,Sn s.t. Sn = S and each Si contains at least one copy of A in the
succedent.

• Symmetrically for ifSbelongs to a subproof ofAm, Γ ′�∆ ′ as its endsequet,
but with succedent replaced by antecedant.

• rD(Γ , Γ ′− � ∆−,∆ ′) = rD(Γ � ∆,An) + rD(Am, Γ ′ � ∆ ′)

Definition 6.4. Given an intmix proof D whose endsequent is Γ � ∆ the index of
D is an ordered pair i(D) = 〈dmc(A), rD(Γ � ∆)〉

�eorem 6.5. Any intmix proof inGimAC can be transformed into an intmix free proof of the
same sequent.

Proof. Let D be an intmix proof whose final inference is:

Γ � ∆,An Am, Γ ′ � ∆ ′

Γ , Γ ′ � ∆,∆ ′
[IMix],A

we proceed by induction on i(D), the index of D.
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1. [i(D) = 〈0, 0〉] As dmc(A) = 0 it follows that A is a literal, and thus as
r(D) = 0 it follows that Γ �∆,An is an instance of an [Initial]. �en there
are two subcases.

(a) �e intmix formula,A is in Γ . In this case we can derive Γ , Γ ′ � ∆∆ ′
from the right premiseA, Γ ′ � ∆ ′ by making use of the admissibility
of [KL] and [KR], first repeatedly applying [KL] to obtain Γ , Γ ′ � ∆ ′
and then weakening in ∆ using KR, noting that the side-condition is
satisfied as Γ � ∆,A is by hypothesis derivable, and thus that t(∆) ⊆
t(Γ) and hence t(∆) ⊆ t(Γ , Γ ′).

(b) Γ and∆ share a common atom. In this case we have that Γ , Γ ′ �∆,∆ ′

is an initial sequent, the valence anti-preservation requirement being
taken care of by the fact that Γ �∆,A is derivable and thus (i) t(A) ⊆
t(Γ) and t(∆ ′) ⊆ t(Γ ′) ∪ t(A) and so t(∆ ′) ⊆ t(Γ , Γ ′) as required.

2. [i(D) = 〈0,k〉, 1 6 k] If r(D) = k > 0 then either rD(Γ � ∆,p∗n) > 0
or rD(p∗m, Γ ′ � ∆ ′), with our intmix formula p∗ an atom. �ere are two
subcases.

(a) [rD(Γ�∆,p∗n) > 0] In this case we know that Γ�∆,An is the conclu-
sion of an inference where p∗ is either a principal formula, or a side-
formula. In the case where it is a side formula we ‘push upward’ oc-
curences of [IMix], reducing the rank of the intmx in order to appeal
to the induction hypothesis. We give some representative cases:

i. Derived using [∧L], giving us:

Γ ,B,C � ∆,p∗n

Γ ,B∧ C � ∆,p∗n
[∧L]

p∗m, Γ ′ � ∆ ′

Γ , Γ ′,B∧ C � ∆,∆ ′
[IMix],p∗

which is transformed to
Γ ,B,C � ∆,p∗n p∗m, Γ ′ � ∆ ′

Γ , Γ ′,B,C � ∆,∆ ′
[IMix],p∗

Γ , Γ ′,B∧ C � ∆,∆ ′
[∧L]

ii. Derived using [¬ ∨ R], giving us:

Γ � ∆,¬B,p∗n Γ � ∆,¬C,p∗n

Γ � ∆,¬(B∨ C),p∗n
[¬∨R]

p∗m, Γ ′ � ∆ ′

Γ , Γ ′ � ∆,∆ ′,¬(B∨ C)
[IMix],p∗
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which is transformed into the following derivation

Γ � ∆,¬B,p∗n p∗m, Γ ′ � ∆ ′

Γ , Γ ′ � ∆,∆ ′,¬B
[IMix],p∗

Γ � ∆,¬C,p∗n p∗m, Γ ′ � ∆ ′

Γ , Γ ′ � ∆,∆ ′,¬C
[IMix],p∗

Γ , Γ ′ � ∆,∆ ′,¬(B∨ C)
[¬∨R]

iii. Derived using [¬¬L], giving us:

Γ ,B � ∆,p∗n

Γ ,¬¬B � ∆,p∗n
[¬¬L]

p∗m, Γ ′ � ∆ ′

Γ , Γ ′,¬¬B � ∆,∆ ′
[IMix],p∗

which is transformed to

Γ ,B � ∆,p∗n p∗m, Γ ′ � ∆ ′

Γ , Γ ′,B � ∆,∆ ′
[IMix],p∗

Γ , Γ ′,¬¬B � ∆,∆ ′
[¬¬L]

If p∗ is principal then it must have resulted form an application of
[WR] yielding:

Γ � ∆,p∗n,p∗

Γ � ∆,p∗n
[WR]

p∗m, Γ ′ � ∆ ′

Γ , Γ ′ � ∆,∆ ′
[IMix],p∗

which is transformed into

Γ � ∆,p∗n+1 p∗m, Γ ′ � ∆ ′

Γ , Γ ′ � ∆,∆ ′
[IMix],p∗

reducing the rank of the intmix by one.

(b) [rD(p∗m, Γ ′ � ∆ ′) > 0] Dealt with in a symmetric manner to those
above.

3. [i(D) = 〈k, 0〉, 1 6 k] since r(D) = 0 we have two possible cases: either
one of the premies is an instance of [Initial], or the intmix formula A is
prinicpal in the inferences whose conclusions are the premises of the Int-
Mix inD, neither of which result from contraction. Let us first quickly deal
with the first case. If both sequents are instances of [Initial] we proceed
as in step 1. Otherwise, one of the sequents is the result of an inference, and
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the intmix formula is principal in that inference, meaning we have a case
with something one of the following forms:

Dl....
Γ � ∆,A A, Γ ′,p∗ � p∗,∆ ′

Γ , Γ ′,p∗ � p∗,∆,∆ ′
[IntMix],A

Γ ′,p∗ � p∗,∆ ′,A

Dr....
A, Γ � ∆

Γ , Γ ′,p∗ � p∗,∆,∆ ′
[IntMix],A

In both cases it is easy to verify that the conclusion sequents of both Intmix
proofs are instances of [Initial],10 allowing us to eliminate the Intmix.

Suppose now, then, that the intmix formulaA is prinicpal in the inferences
whose conclusions are the premises of the IntMix in D, neither of which
result from contraction. In this case we provide reductions for a represen-
tative sample of cases in which we reduce the dmc of the intmix formula.

(a) �e intmix-formula is of the form ¬¬A.

Γ ′ �A,∆ ′

Γ ′ � ¬¬A,∆ ′
[DNR]

Γ ,A � ∆
Γ ,¬¬A � ∆

[DNL]

Γ , Γ ′ � ∆,∆ ′
[IntMix],¬¬A

which is transformed into the following derivation

Γ ′ �A,∆ ′ Γ ,A � ∆
Γ , Γ ′ � ∆,∆ ′

[IntMix],A

(b) �e intmix-formula is of the formA∧B, giving us the following deriva-
tion

Γ ,A,B � ∆
Γ ,A∧ B � ∆

[∧L]
Γ ′ � ∆ ′,A Γ ′ � ∆ ′,B

Γ ′ � ∆ ′,A∧ B
[∧R]

Γ , Γ ′ � ∆,∆ ′
[IntMix],A∧B

which is transformed into

Γ ′ � ∆ ′,B
Γ ′ � ∆ ′,A Γ ,A,B � ∆

Γ , Γ ′,B � ∆,∆ ′
[IntMix],A

Γ ′, Γ ′, Γ � ∆,∆ ′,∆ ′
[IntMix],B

Γ ′, Γ � ∆,∆ ′
[W]∗

10For example, in the case of the Intmix with Dr note that t(∆) ⊆ t(Γ , Γ ′,p∗), as given the
leftmost premise we have that t(A) ⊆ t(Γ ′,p∗) and so t(Γ ,A) ⊆ t(Γ , Γ ′,p∗) as by the provability
of the left-premise it follows that t(∆) ⊆ t(Γ ,A) we can conclude t(∆) ⊆ t(Γ , Γ ′,p∗) as desired.
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(c) �e intmix-formula is of the formA∨B, giving us the following deriva-
tion

Γ ,A � ∆ Γ ,B � ∆
Γ ,A∨ B � ∆

[∨L]
Γ ′ � ∆ ′,A,B
Γ ′ � ∆ ′,A∨ B

[∨R]

Γ , Γ ′ � ∆,∆ ′
[IntMix]A∨B

which is transformed into

Γ ′ � ∆ ′,A,B Γ ,A � ∆
Γ , Γ ′ � ∆,∆ ′,B

[IntMix],A
Γ ,B � ∆

Γ , Γ , Γ ′ � ∆,∆,∆ ′
[IntMix],B

Γ , Γ ′ � ∆,∆ ′
[W]∗

Just as in the previous case, the intmix formulas are both of lower de-
gree.

4. [i(D) = 〈k, j〉, 1 6 j,k] We distinguish again the rD(Γ � ∆,An) > 0 and
rD(A

m, Γ ′ � ∆ ′) > 0 cases.

(a) [rD(Γ � ∆,An) > 0] If the intmix formula is a side formula we push
intmix’s upwards again. �ese cases follow much like those given above.
Let us suppose, then, that the intmix formula is principal. We treat
some representative cases.

i. �e intmix-formula is of the form ¬¬A.

Γ �A,∆
Γ � ¬¬A,∆

[DNR]
Γ ′,¬¬A � ∆ ′

Γ , Γ ′− � ∆−,∆ ′
[IntMix],¬¬A

where as rD(Γ � ∆,¬¬A) > 0 we know that ¬¬A ∈ ∆.

Γ �A,∆ Γ ′,¬¬A � ∆ ′

Γ , Γ ′− � ∆−,∆ ′,A
[IntMix],¬¬A(1)

Γ , Γ ′− � ∆−,∆ ′,¬¬A
[DNR]

Γ ′,¬¬A � ∆ ′

Γ , Γ ′−, Γ ′− � ∆−,∆ ′,∆ ′
[IntMix],¬¬A(2)

Γ , Γ ′− � ∆−,∆ ′
[K]

As rD((Γ � ∆,A) < rD(Γ � ∆,¬¬A), the mix (1) is over lower
rank thank that in our original proof. Similarly, as the rank of the
left premise in mix (2) is 0, we that mix is also of lower rank.
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ii. �e intmix-formula is of the formA∧ B.

Γ � ∆,A Γ � ∆,B
Γ � ∆,A∧ B A∧ B, Γ ′ � ∆ ′

Γ , Γ ′− � ∆−,∆ ′
[IntMix],A∧B

again as rD(Γ � ∆,A∧ B) > 0 we know thatA∧ B ∈ ∆.

Γ � ∆,A A∧ B, Γ ′ � ∆ ′

Γ , Γ ′− � ∆−,∆ ′,A
[IntMix],A∧B

Γ � ∆,B A∧ B, Γ ′ � ∆ ′

Γ , Γ ′− � ∆−,∆ ′,B
[IntMix],A∧B

Γ , Γ ′− � ∆−,∆ ′,A∧ B A∧ B, Γ ′ � ∆ ′

Γ , Γ ′−, Γ ′− � ∆−,∆ ′,∆ ′
[IntMix],A∧B

Γ , Γ ′− � ∆−,∆ ′
[K]

�e upper two intmixes are of lower rank, as their left premise
is now of lower rank. �e final intmix is of lower rank as its left
premise now has rank 0. In both cases, then we can apply the
induction hypothesis as desired.

(b) [rD(Am, Γ ′ � ∆ ′) > 0] is dealt with in a symmetric manner.

Corollary 6.6. Cut is admissible inGAC
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