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Abstract

In this paper we will provide a modal-to-modal translational embed-
ding of E into K, simplifying a similar result which is obtainable using a
novel translation due to S.K. Thomason.

1 Introduction

Throughout this paper we will be concerned with translational embeddings
which faithfully embed the smallest congruential modal logic E into the smallest
normal modal logic K. In [6] it is shown that we can faithfully embed E into
trimodal K using the modal-to-modal translation ( · )F for which (�A)F =
♦1(�2(A)F ∧ �3¬(A)F ).1 Here we are to think of ♦1 as quantifying over
neighborhoods, �2 as quantifying within neighborhoods, and �3 as quantifying
within their complements – thus allowing us to mimic the truth conditions for
�-formulas within a neighborhood model. In [3] it is noted that we can sim-
plify this translation to one which faithfully embeds E in bimodal K by making
�1 and �2 the same operator – thus making the new translation be such that
(�A)F

′
= ♦1(�1(A)F

′ ∧�2¬(A)F
′
). One might wonder then whether a further

simplification along these lines – identifying �1 and �2 in the clause for (�A)F
′

– would allow us to faithfully embed E in monomodal K. As it happens the
simplification cannot be of this nature – as the translation ( · )F

′′
for which

(�A)F
′′

= ♦(�(A)F
′′ ∧ �¬(A)F

′′
) fails to faithfully embed E into K, there

being K-provable formulas of the form (A)F
′′

for which A is not E-provable.2

Consequently we will have to look elsewhere for a translation which faithfully
embeds E into monomodal K.

It turns out that one way for us to find such a result is to use a very general
result of Thomason which allows us to faithfully embed bimodal logics into a
class of normal monomodal logics. This particular result when taken together

∗This is a preprint. The full version has appeared as: French, R. (2009), “A Simplified
Embedding of E into Monomodal K”, Logic Journal of the IGPL, Vol. 17, 421–428, 2009.
[doi]

1Here n-modal K (alias Kn) is the modal logic built on the propositional language con-
taining n box operators �1, ...,�n each of which obeys all the inferential principles of � in
monomodal K.

2For example, let A be the formula “�p↔ �¬p”, whose ( · )F
′′

-translation is provable in
every congruential modal logic.
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with the embedding of E into bimodal K due to [3], allows us to produce
a modal-to-modal translation which faithfully embeds E into K. The modal
complexity of the resulting translation is quite high, and the result somewhat
indirect. Thus, after having given the Thomason derived translation in §2, we
will go on (in §3) to produce our own simplified translation of E into K inspired
by some work by [1]. Therein Brown claimed that the translation which replaces
all occurances of � with ♦� (what we call τ♦� below) faithfully embeds E into
monomodal K. As it happens though, this translation faithfully embeds EM
into K – where EM is the smallest congruential extension of E by the formula
‘�(A ∧B)→ �A’.3

Before we continue an explanation is due concerning some terminology. Let
S and S′ be modal logics in the sets of formulas sense,4 and let a translation
τ be a function from the language of S to the language of S′ which faithfully
embeds S into S′ whenever the following holds for all formulas A:

A ∈ S if and only if τ(A) ∈ S′.

Let us say that a translation τ is variable-fixed if τ(pi) = pi, and homonymous
on the classical connectives whenever τ(#(A1, ..., An) = #(τ(A1), ..., τ(An) for
all classical connectives #. In particular we will be interested in translations
which fulfill both of these conditions and translate �A in terms of some formula
containing exactly one varible (p) C(p) such that τ(�A) = C(τ(A)). These
translations are easily seen to be definitional in the sense of [9]. For more
information on such modal-to-modal translations the reader is referred to [10],
from whom we take the convention of associating with each such formula C(p) a
translation τC which replaces all occurrences of �A in a formula with C(τC(A)).

Given a formula in a single propositional variable C(p) – a unary context
– and a modal logic S, we will say that C(p) is congruential according to S if
C(A) ↔ C(B) ∈ S whenever A ↔ B ∈ S. A modal logic S is congruential
whenever the context �p is congruential according to S. Following [2] we will
denote the smallest congruential modal logic by E. It is well known that E is
determined by the class of all neighborhood frames, where a neighborhood frame
is a structure 〈W,N〉 where W 6= ∅ and and N is a function from W to ℘(℘(W )).
The definition of truth at a point in a neighborhood model 〈W,N, V 〉 is standard
for the non-modal connectives, with the clause for �A being as follows, for a
formula A and a point x ∈W .

〈W,N, V 〉 |=x �A if and only if ||A|| ∈ N(x).

Here ||A|| is the set of all points y ∈ W at which the formula A is true. It
is worth also recalling the notion of the modal degree of a formula A – the

3Brown does not claim this as directly as we have above. On p. 14 he claims that the
logic of one of the operators his bimodal logic of action and ability is E, and on pp.15-16
he shows that the translation τ♦� will faithfully embed this subsystem into K. It is the first
claim which is incorrect.

4That is to say, sets of formulas of the propositional language based on some set of function-
ally complete classical connectives and the unary connective �, closed under Modus Ponens
and Uniform Substitution.
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maximum degree of nesting of modal operators. Define the modal degree of
a formula A inductively as follows: d(pi) = 0; d(¬A) = d(A); d(A → B) =
d(A ∧B) = d(A ∨B) = max(d(A), d(B)); d(�A) = d(A) + 1.5

2 Thomason’s Translation

In [6], building on some work done in the 1970s by S.K. Thomason ([7], [8]),
we are presented with a general account of how to faithfully embed all bimodal
normal modal logics into a class of monomodal normal modal logics. In this
section we will begin by presenting these results, and then show how we can use
them to give a faithful embedding of E into monomodal K. Throughout we will
use t = �⊥, w = ♦�⊥ and b = ¬t∧¬w.6 The Thomason translation – τTho – is
the following function which maps formulas of the language of bimodal logic to
the monomodal language.

τTho(pi) = pi

τTho(A ∧B) = τTho(A) ∧ τTho(B)

τTho(¬A) = ¬τTho(A)

τTho(�1A) = �(w→ τTho(A))

τTho(�2A) = �(b→ �(b→ �(w→ τTho(A)))).

We will occasionally use �wA as an abbreviation for �(w → A) and �bA as
an abbreviation for �(b → A) and �tA as an abbreviation for �(t → A). It
bears noting that this translation is very different from the one given in [7,
p.550] – which is neither variable fixed nor homonymous on the propositional
connectives, as well as from that given in [4, p.308] – which is variable fixed, but
not homonymous on the propositional connectives, translating ‘¬p’ as ‘w∧¬p’.7
In what follows we will refer to the translation τTho as the ‘Thomason tranlsation’
to avoid possible ambiguity, as this is all we need to derive our first embedding
of E into monomodal K.

Consider the following formulas (from [6, p.116]).

5If we are considering formulas in the language of bimodal logic we can replace the last
clause with d(�iA) = d(A) + 1.

6These labels are taken from [6], where they are mnemonic for ‘terminal’, ‘white’ and
‘black’ respectively – Kracht and Wolter using � and � for what we’re calling �1 and �2.

7This translation does not do the work which Kracht sets for it – the crucial result (Propo-
sition 6.6.14 of [4]) being incorrect. Consider the model M = 〈{x, y}, {〈x, y〉}, V 〉 where
V (p) = {x}. Let V ′(p) = {x◦, x•} – then V ′ is a valuation such that V ′(p) ∩W ◦ = (V (p))◦.
It is easy to see that Ms |=x◦ w ∧ ♦p while M 6|=x ♦p – giving us a failure of the ‘only if’
direction of Proposition 6.6.14 in [4]. The incorrectness of this crucial result makes all the
results there concerning the Thomason translation incorrect. This problem can be avoided if
we alter the translation so that it translates pi as w ∧ pi – making it more closely resemble
that in [7]. This (corrected) translation appears in [5].
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w→ (♦bp↔ �bp) b→ (♦wp↔ �wp)

(w ∧ p)→ �b�wp (b ∧ p)→ �w�bp

♦tp→ �tp (w ∧ ♦tp)→ �w♦tp

(w ∧ ♦w♦tp)→ ♦tp (w ∧ ♦tp)→ �b�b�w♦tp

Let Sim be the logic obtained by taking the normal extension of K by the
above formulas.8 What the Thomason translation allows us to do is faithfully
embed every normal bimodal logic into a normal extension of Sim.

Proposition 1. [6, p.122] For all sets of bimodal formulas ∆, and all bimodal
formulas A we have the following.

A ∈ K2 ⊕∆ if and only if τTho(A) ∈ Sim⊕ {w→ τTho(B)|B ∈ ∆}.

In the presence of the above result we can see the general strategy behind
the title of [6]. The translation τTho faithfully embeds bimodal normal modal
logics into normal (monomodal) logics, and a wide range of non-normal modal
logics can be faithfully embedded into bimodal normal modal logics – and an
even wider range can be faithfully embedded into modal logics extending Kn

for n > 2, and so if we lift the Thomason translation to full generality then it
seems possible that we may be able to faithfully embed all modal logics into
normal monomodal logics. What we will now do is, using the strategy outlined
above, present a translation which faithfully embeds E into monomodal K.

In [6] we are only presented with the translation ( · )F
′

(from §1) which
faithfully embeds E into K3. So lifting the Thomason translation so that it
faithfully embeds trimodal normal modal logics into normal monomodal logics
we could obtain a translation which faithfully embeds E into K. Already at this
stage there is an obvious simplification we could make, which does not require
us to deal with trimodal logics.

Recall the following result (mentioned above in §1):

Theorem 1. [3, p.307]

A ∈ E if and only if (A)F
′
∈ K2.

This result, coupled with Proposition 1 allows us to faithfully embed E into
the logic Sim using the translation τTho(( · )F

′
). What we will now show is that

this also allows us to show that E can be faithfully embedded into K.

Theorem 2.
A ∈ E if and only if τTho((A)F

′
) ∈ K.

8The label Sim is taken from Kracht and Wolter, who use it because they call a translation
faithfully embedding S into S′ a simulation of S by S′.
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Proof. For the ‘only if’ direction suppose that A 6∈ E. Then by Theorem 1 it
follows that (A)F

′ 6∈ K2. By Proposition 1 it then follows that τTho((A)F
′
) 6∈

Sim. As K ⊆ Sim it follows then that τTho((A)F
′
) 6∈ K.

The ‘if’ direction follows by induction upon the length of derivations of A,
the only case of interest coming in the inductive step where A follows from the
congruentiality of �. But as all contexts are congruential in K it follows that if
A↔ B ∈ K then C(A)↔ C(B) ∈ K for the case where C(p) = τTho(�p)F ).

This gives us a translation τ where τ(�A) =

♦(♦�⊥ ∧ [�(♦�⊥ → τ(A)) ∧
�((¬♦�⊥ ∧ ¬�⊥)→ �((¬♦�⊥ ∧ ¬�⊥)→ �(♦�⊥ → ¬τ(A))))]).

As we can see above, the context which we are using here to translate � is quite
unwieldy, having a modal degree of 6. What we will do in the next section is to
provide a simpler, and more direct, faithful embedding of E into K.

3 A Simplified Translation of E into K

Let τ�′ be the modal translation which uniformly replaces all occurrences of �B
with �′τ�′(B), where �′ is defined as follows.9

�′A =Def ♦(♦(�A ∧��♦>) ∧ ♦(♦(�¬A ∧�♦>) ∧ ♦♦�⊥)

Like every context, the context C(p) = �′p is congruential in K, allowing us to
conclude the following.

Lemma 1. For all formulas A if A ∈ E then τ�′(A) ∈ K.

Before we prove that τ�′ faithfully embeds E into K we will first need to
recall a result concerning classes of neighborhood frames which determine E.
Say that a neighborhood frame 〈W,N〉 has non-empty neighborhoods whenever
for all x ∈W we have that N(x) 6= ∅.

Theorem 3. E is determined by the class of all neighborhood frames with non-
empty neighborhoods

Proof. Follows from the fact noted in [2, p.255] that the neighborhood function
N(x) = {||A|| : �A ∈ x} ∪ ∆ is a canonical neighborhood function whenever
∆ ⊆ {X ⊆W : X 6= ||A|| for any formula A}.

Given a neighborhood model N = 〈W,N, V 〉, a point x ∈ W and a neigh-
borhood X ∈ N(x) let 〈x,X, i〉 (0 ≤ i ≤ 5) be new points not belonging to
W , which we will write as 〈x,X〉∗, 〈x,X〉+, (x,X〉−, 〈x,X〉I ,〈x,X〉Ie1, 〈x,X〉Ie2.

9The first conjunct of the conjunction in the scope of the main ’♦’ here could more simply
be written as ♦�(A ∧ �♦>), but the formulation above has the advantage of displaying the
second conjuncts of the two inner conjunctions as being each other’s negations.
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Here we are thinking of the labels 〈x,X〉+ and 〈x,X〉− as denoting the neigh-
borhood 〈x,X〉 and its complement respectively. The superscript I should be
read as ‘intermediary’, and the subscripted e in e1 and e2 as ‘end’. Our reason
for the choice of these names should become clear in what follows. Let K〈x,X〉
and R〈x,X〉 be defined as follows.

K〈x,X〉 = {〈x,X〉∗, 〈x,X〉+, 〈x,X〉i, (x,X〉Ie1, 〈x,X〉Ie2, 〈x,X〉−}.
R〈x,X〉 = {〈〈x,X〉∗, 〈x,X〉+〉, 〈(x,X〉∗, 〈x,X〉I〉, 〈〈x,X〉I , 〈x,X〉−〉,

〈〈x,X〉I , 〈x,X〉Ie1〉, 〈(x,X〉Ie1, 〈x,X〉Ie2〉}.

Definition 4. Given a neighborhood model with non-empty neighborhoods
N = 〈W,N, V 〉 construct the Kripke model NEK = 〈WEK , REK , VEK〉 as fol-
lows.

• WEK := W ∪
⋃

x∈W {K〈x,X〉|X ∈ N(x)}.

• REK :=
⋃

x∈W {R〈x,X〉|X ∈ N(x)} ∪ {〈x, 〈x,X〉∗〉|X ∈ N(x)}∪
{〈〈x,X〉+, y〉|y ∈ X} ∪ {〈〈x,X〉−, y〉|y ∈ (W \X〉)}.

• VEK := V .

Figure 1: A snapshot of NEK for a neighborhood X ∈ N(x).

To get a feel for the workings of this model construction, inspired by those
in [1] and [3], see Figure 1 which illustrates what happens to a point x ∈ W
which has X as one of its neighborhoods. The model construction creates a
structure like that in Figure 1 for each neighborhood X in N(x) for all points
x ∈ W – the points 〈x,X〉∗ acting as ‘overseers’ allowing us to check whether
some formula B is true throughout some neighborhood X and false throughout
its complement W \X.

One might wonder about the purpose of the ‘end’ points in the above model
construction. What we will now show is that these dead end points, along with
the pure formulas in the definition of �′A, allow us to force the two conjunctions
within the scope of the outermost diamond to be true at specific points in the
model (〈x,X〉+ and 〈x,X〉I respectively) whenever �′A is true at 〈x,X〉∗.
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Lemma 2. For all formulas A and all x ∈ W and X ∈ N(x) we have the
following.

NEK |=〈x,X〉∗ ♦(�A ∧��♦>)⇒ NEK |=〈x,X〉+ �A ∧��♦>.

Proof. Suppose that NEK |=〈x,X〉∗ ♦(�A∧��♦>), and suppose for a reductio
that NEK 6|=〈x,X〉+ �A∧��♦>. Then, as the only other point REK-accessible

to 〈x,X〉∗ is 〈x,X〉I we know that NEK |=〈x,X〉I �A∧��♦>. In particular this
means that NEK |=〈x,X〉I ��♦>. Thus NEK |=〈x,X〉Ie1 �♦> and NEK |=〈x,X〉Ie2
♦>, which cannot happen. Thus it follows that NEK |=〈x,X〉+ �A ∧��♦> as
desired.

Lemma 3. For all formulas A and all x ∈ W and X ∈ N(x) we have the
following.

NEK |=〈x,X〉∗ ♦(♦(�¬A ∧�♦>) ∧ ♦♦�⊥)⇒
NEK |=〈x,X〉I ♦(�¬A ∧�♦>) ∧ ♦♦�⊥

Proof. Suppose that NEK |=〈x,X〉∗ ♦(♦(�¬A∧�♦>)∧♦♦�⊥), and suppose for
a reductio that NEK 6|=〈x,X〉I ♦(�¬A∧�♦>)∧♦♦�⊥. As the only other point
REK-accessible to 〈x,X〉∗ is 〈x,X〉+ this means that NEK |=〈x,X〉+ ♦(�¬A ∧
�♦>)∧♦♦�⊥. In particular it follows that that NEK |=〈x,X〉+ ♦♦�⊥. So there
is a point y ∈ REK(〈x,X〉+) such that NEK |=y ♦�⊥. So for some z such that
REKyz, NEK |=z �⊥. But this is impossible, since the only z for which REKyz
is 〈y, Y 〉∗ for some neighborhood Y ∈ N(y), and 〈y, Y 〉∗ is not a point lacking
REK-successors (in fact, having precisely two, namely 〈y, Y 〉+ and 〈y, Y 〉I). So
by reductio it follows that NEK |=〈x,X〉I ♦(�¬A ∧�♦>) ∧ ♦♦�⊥.

Lemma 4. For all formulas A and all x ∈ W and X ∈ N(x) we have the
following.

NEK |=〈x,X〉I ♦(�¬A ∧�♦>) ∧ ♦♦�⊥ ⇒ NEK |=〈x,X〉− �¬A ∧�♦>.

Proof. We begin by noting that ♦(�¬A ∧ �♦>) ∧ ♦♦�⊥ is a formula of the
form ♦A ∧ ♦B (with A = �¬A ∧ �♦> and B = ♦�⊥), and that we can’t
have ♦(A ∧ B) true at 〈x,X〉I when A and B are understood as above – as
this would mean that �¬A ∧ �♦> ∧ ♦�⊥, as this would mean that �♦> ∧
¬�♦> were true at one of 〈x,X〉Ie1 or 〈x,X〉−. Thus we know that either (a)
NEK |=〈x,X〉− �¬A ∧ �♦>. or (b) NEK |=〈x,X〉Ie1 �¬A ∧ �♦>.. For (b) this

would mean that NEK |=〈x,X〉Ie2 ♦> which is clearly not so, and thus it follows

that NEK |=〈x,X〉− �¬A ∧�♦>..

Lemma 5. For all points x ∈W and X ∈ N(x) we have the following.

NEK |=〈x,X〉+ ��♦>.
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Proof. Suppose for a reductio that NEK 6|=〈x,X〉+ ��♦>. Then there must be
a point y ∈ REK(〈x,X〉+) and a point z ∈ REK(y) such that NEK 6|=z ♦>. It
is easy to see that such a point z must be of the form 〈y, Y 〉∗ for some Y ∈ N(y)
and that such a point has exactly two REK-successors – namely 〈y, Y 〉+ and
〈y, Y 〉I – and thus NEK |=z ♦>, giving us a contradiction. Thus by reductio it
follows that NEK |=〈x,X〉+ ��♦> as desired.

Lemma 6. For all points x ∈W and X ∈ N(x) we have the following.

NEK |=〈x,X〉− �♦>

Proof. Suppose for a reductio that NEK 6|=〈x,X〉− �♦>. Then there must be a
point y ∈ REK(〈x,X〉−) such thatNEK 6|=y ♦>. But, asN is a model with non-
empty neighborhoods it follows that there must be at least some set of points
Y such that Y ∈ N(y). Thus, by the construction of NEK it follows that
Ry〈y, Y 〉∗ – giving us a contradiction. Thus it follows that NEK |=〈x,X〉− �♦>
as desired.

Theorem 5. Let N = 〈W,N, V 〉 be a neighborhood model with non-empty
neighborhoods and NEK = 〈WEK , REK , VEK〉 be the model given by Definition
4. Then, for all formulas A and all points x ∈W we have the following.

N |=x A if and only if NEK |=x τ�′(A).

Proof. By induction upon the complexity of A, the only case of interest being
that in the inductive step where A = �B for some formula B.

For the ‘only if’ direction suppose that N |=x �B. Then for X = ||B||,
we have that X ∈ N(x). By the inductive hypothesis it follows that for
all points y ∈ X that NEK |=y τ�′(B). By the definition of REK it fol-
lows that NEK |=〈x,X〉+ �τ�′(B) and by Lemma 5 NEK |=〈x,X〉+ ��♦>,
and consequently that NEK |=〈x,X〉∗ ♦(�τ�′(B) ∧ ��♦>). As the points
y ∈ X are the only points in N where B is true we know that all the points
z ∈ W \ X are such that N 6|=z B and so by the inductive hypothesis we
know that, for all such points z NEK 6|=z τ�′(B) – and hence that NEK |=z

¬τ�′(B). By the definition of REK it follows that NEK |=〈x,X〉− �¬τ�′(B),
and thus by Lemma 6 NEK |=〈x,X〉− �¬τ�′(B) ∧ ♦�>. Thus it follows that
NEK |=〈x,X〉I ♦(�¬τ�′(B) ∧ ♦�>) ∧ ♦♦�⊥. Consequently we can see that
NEK |=〈x,X〉∗ ♦(�τ�′(B)∧��♦>)∧♦(♦(�¬τ�′(B)∧♦�>)∧♦♦�⊥) and thus
that NEK |=x τ�′(�B).

For the ‘if’ direction suppose that NEK |=x τ�′(�B). Then by the def-
inition of truth we have that there exists a point y ∈ REK(x) such that
NEK |=y ♦(�τ�′(B) ∧ ��♦>) ∧ ♦(♦(�¬τ�′(B) ∧ ♦�>) ∧ ♦♦�⊥). From the
construction of NEK we know that such a y will be 〈x,X〉∗ for some X ∈ N(x).
By Lemma 2 it follows that NEK |=〈x,X〉+ �τ�′(B) ∧ ��♦>. Thus for all
points y ∈ REK(〈x,X〉+) we have NEK |=y τ�′(B). By the inductive hypoth-
esis N |=y B for all such points y – and thus X ⊆ ||B||. By Lemma 3 it
follows that NEK |=〈x,X〉I ♦(�¬τ�′(B) ∧ ♦�>) ∧ ♦♦�⊥), and thus by Lemma
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4 NEK |=〈x,X〉− (�¬τ�′(B) ∧ ♦�>). Thus for all points z ∈ W \ X we have
that NEK 6|=z τ�′(B). By the inductive hypothesis N 6|=z B for all such points
z – and thus W \X = W \ ||B||. It follows then, that X = ||B|| and thus that
N |=x �B as desired.

Theorem 6. For all formulas A we have the following.

A ∈ E if and only if τ�′(A) ∈ K.

Proof. The ‘only if’ direction is Lemma 1. For the ‘if’ direction suppose that
A 6∈ E. Then by Theorem 3 there is a neighborhood model with non-empty
neighborhoods N = 〈W,N, V 〉 and a point x ∈ W such that N 6|=x A. By
Theorem 5 it follows that NEK 6|=x τ�′(A) and thus, as this is a model on a
Kripke frame, that τ�′(A) 6∈ K as desired.

As compared to the translation in section 2 our translation maps formulas
of modal degree n to formulas of modal degree 5n, while the translation derived
from the Thomason translation maps such a formula to one of modal degree 7n.
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