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Abstract

�is paper argues that adopting a particular dialogical account of logical con-

sequence quite directly gives rise to an interesting form of logical pluralism, the

form of pluralism in question arising out of the requirement that deductive proofs

be explanatory.

1 �e Explanatory Problem for Logical Pluralism
Is there a unique answer to the question of whether a given argument is (deductively)

valid? According to logical monists such as Read (2006) and Priest (2011), who hold that

there is a unique correct logic, the answer is an emphatic ‘yes’, validity judgements be-

ing determined by the deliverances of the ‘one true logic’. According to logical pluralists
such as Beall and Restall (2006) and Shapiro (2014), by contrast, the answer to this ques-

tion is ‘no’. �e logical pluralist holds that there are, in some sense, multiple different

correct logics which we can use to assess the validity of any given argument, and which

may deliver incompatible validity judgements concerning said argument. �ose who

wish to defend a pluralist position face a kind of explanatory challenge posed elegantly

by Rosanna Keefe in the following quote:

A characterisation of a pluralist position needs to explain what it is to endorse all

of the various consequence relations the pluralist accepts and how they relate to

an intuitive notion of logical consequence. (Keefe, 2014, p.1376)

So a logical pluralist needs to explain two things: firstly, how there can be more

than one correct notion of logical consequence; and secondly, why these various dif-

ferent notions of logical consequence are notions of logical consequence. In order to

meet this challenge one has to say something substantial about the nature of logical

consequence. For example, in Beall and Restall (2006), the locus classicus on logical

pluralism, logical consequence is defined in terms of what they call the ‘Generalized

Tarski Schema’, according to which an argument is validx iff the conclusion is true in

every casex in which the premises are true. We then get different notions of validity

by giving different specifications of what a case is. For example, construing cases as

‘situations’ gives us a Relevant notion of validity. To endorse such a notion of validity

is just to take the ‘actual case’ to be amongst its cases. We will not detain ourselves with
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an assessment of the adequacy of this response to the explanatory challenge, referring

the interesting reader to the extended discussion in section 3 of Keefe (2014) where this

point is taken up. Our reasons for mentioning this particular account is merely to give

the reader an example of what a response to this challenge might look like.

What we will do here is to use the explanatory challenge to enhance our under-

standing of a different, dialogical, account of logical consequence. In particular I will

show how, properly understood, the Build-In Opponent conception of deduction nat-

urally gives rise to an interesting form of logical pluralism (contingent on the existence

of groups engaged in certain kinds of explanatory projects). We begin in Section 2 by

giving an informal account of a dialogical conception of logical consequence, which

we formalize in Section 3 in terms of a non-standard kind of dialogue game. In Sec-

tion 4 I will then go on to argue that, properly understood, the Built-In Opponent con-

ception of deduction gives rise to an interesting form of logical pluralism conditional

on there being certain groups whose projects place particular kinds of constraints on

what counts as an explanatory proof. Sections 4.1 and 4.2 then give examples of groups

which, I argue, can be seen to be engaged in such explanatory projects. I conclude in

Section 5 by examining the kind of pluralism which results from the above considera-

tions. Formal results concerning the particular dialogue games we are concerned with

are largely confined to a technical appendix at the end of the paper.

2 �e Built-In Opponent Conception of Deduction
�e Built-In Opponent (or BIO) conception of Deduction is a specific dialogical account

of logic developed by Catarina Dutilh Novaes in a sequence of papers and applied to a

number of issues ranging from the normativity of logic (Dutilh Novaes, 2015), the cog-

nitive profile of deductive reasoning (Dutilh Novaes, 2013), reductio arguments (Du-

tilh Novaes, 2016), mathematical explanation (Dutilh Novaes, 2018), and the seman-

tic paradoxes (Dutilh Novaes and French, 2018). According to this account, deductive

arguments correspond to a specialized kind of semi-adversarial dialogues, involving

both an adversarial as well as an importantly cooperative component. In these dia-

logues our two participants have opposed goals: the Prover (or Proponent) seeks to es-

tablish that a certain conclusion follows from given premises; while the Skeptic (or Op-

ponent) seeks to block the establishment of this conclusion, typically by asking pointed

‘why does this follow?’ questions. We can think of these dialogues as involving the

Skeptic asking for, and the Prover giving, reasons for their various claims of logical

consequence (echoing the ‘game of giving and asking for reasons’ of Brandom (1994)).

�e adversarial nature of these dialogues is obvious, being a result of the opposed goals

of the two players. At a higher-level, though, there is also a large degree of cooperation

between the two players, as Dutilh Novaes explains:

Proponent’s job is not only to ‘beat Opponent’; she also seeks to persuade Opponent

of the truth of the conclusion, if he has granted the truth of the premises. In fact,

the goal is not only to show that the conclusion follows from the premises, but also

why it does; this corresponds to the idea that deductive arguments ought to have

explanatory value. In this sense, Proponent and Opponent are cooperating in a
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common inquiry to establish what follows from the premises, and thus to further

investigate the topic in question. (Dutilh Novaes, 2015, p.599f)

It is important to note that it is not only Prover’s role which has a cooperative com-

ponent. �e Skeptic’s role also requires a degree of higher-order cooperation, requir-

ing them to not simply obstinately deny that a conclusion follows from some given

premises, but instead to make clear to the Prover what would be required to convince

them that the conclusion follows from the premises. One can see part of the tension

between Achilles and the Tortoise in Carroll (1895) as arising out of the Tortoise not be-

ing a particularly cooperative Skeptic, and not being clear about what it would take to

convince them that an inference via Modus Ponens is valid (resulting in them being a

decidedly passive aggressive Skeptic).

Prover winning any particular dialogue with Skeptic, convincing them on that oc-

casion that the conclusion follows from the premises given, does not necessarily meant

that the argument in question is deductively valid, though. What is required for de-

ductive validity is that Prover is able to win a dialogue with Skeptic no matter how

Skeptic presses their case. �is makes deductive validity correspond to the existence

of a winning strategy for Prover, a strategy for engaging in a dialogue with Skeptic so

that, no matter how Skeptic challenges their reasoning, Prover can give a response so

that they eventually end up convincing them.

At a first glance deduction does not appear to involve the degree of multi-agent

interaction which is present in the above picture. Typically we think of the act of de-

termining whether an argument is deductively valid as being a rather solitary activity,

involving at most one agent (and often barely even that!). �is thought is at least par-

tially correct. �e other important aspect of the present approach is the idea that over

time Skeptic has been progressively ‘silenced’ and idealized, until they are no longer an

active participant in a deductive dialogue but have instead become part of the deduc-

tive method itself. In essence their role has been internalized and is played ‘offline’ by

Prover. In order to beat such an idealized opponent Prover needs to ensure that there

are no counterexamples to the inferential steps which they provide as responses to the

Skeptic’s queries. In later papers Dutilh Novaes explains the internalization of Skeptic

in terms of what Pascual and Oakley (2017) call fictive interaction, noting that:

Given the observation that a mathematical proof is a (specific, regimented

and specialized) form of discourse, and the idea that interactive, conver-

sational structures permeate much of what appears to be monological dis-

course at first sight, it is in fact not so surprising that a mathematical

proof too would have a conversational (dialogical) basis. My main contri-

bution here is to spell out in detail the kind of conversation that a mathe-

matical proof re-enacts: semi-adversarial dialogues following fairly strict

rules, involving the fictive participants Prover and Skeptic. (Dutilh No-

vaes, 2018, p.90)

�is account is intended as an account of the nature of our deductive practices, of in

some sense ‘what is really going on’ when we provide a deductively valid proof. We will

not weigh in here on whether this is correct as an account of the nature or geneaology

of our deductive practices, the view is at the very least both fruitful and interesting.
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Rather what we will show here is that the way in which the Built-In Opponent con-

ception of deduction highlights and emphasizes the connection between proofs and

explanations points towards an interesting variety of logical pluralism.

3 Prover-Skeptic Games
In order to illustrate how the Built-In Opponent conception of deduction gives rise

to a form of logical pluralism, it will be helpful to make use of an (admittedly rather

simplistic) model of the kinds of dialogical interactions which are at the heart of this

account. To this end we will make use of Prover-Skeptic Games, a variety of dialogue

game introduced in (Sørensen and Urzyczyn, 2006, p.89–94), where they are used to

game-theoretically characterize the implicational fragment of intuitionistic logic.
1

We

will largely follow (and build on) the presentation of such games given in Shoham and

Francez (2008), where they are used to characterize the (associative) Lambek calculus.
2

In order to get a feel for how these games work it will be helpful to consider (in Figure

1) the kind of situation which these games are meant to model.

�e dialogue in Figure 1 has the structure of the kind of dialogical interactions

which are at the heart of the built-in opponent conception of deduction. In partic-

ular we can see Scott playing the role of Skeptic, constantly asking Penelope (acting as

Prover) to provide reasons for her assertions by cooperatively stating what would need

to be shown in order to convince them, and Penelope acting as Prover providing such

reasons. �is is also the general structure of a Prover-Skeptic game. In Sørensen and

Urzyczyn (2006) these are defined in rather austere syntactical terms, instead we will

find it much more helpful to follow Shoham and Francez (2008) and define our Prover-

Skeptic games in terms of an antecedently given natural deduction system. Moreover,

we will also find it helpful to (following Shoham and Francez (2008)) characterize the

moves in our game in terms of sequents rather than formulas, as the reader will see

below.

3.1 Formal Preliminaries
For the sake of simplicity we will stick here with the languageL of implicational logic,

3

the formulas of which are constructed out of a countable supply of propositional vari-

ables p0, p1, p2, . . . using the binary connective ‘→’ of implication (i.e. pi is a formula

1
�ese games, like most dialogical approaches to logic, draw their inspiration from work done by Paul

Lorenzen and Kuno Lorenz on dialogical logic (Lorenzen and Lorenz (1978)). As pointed out in Uckelman

et al. (2014), post-Lorenzen work on dialogical logic can be seen as being split into two ‘schools’—one focus-

ing more on individual dialogues, the other on winning strategies. Developments in the former of these two

schools are nicely summarized in Keiff (2009). �e latter school takes Felscher (1985) as its initial impetus,

with recent work including Sørensen and Urzyczyn (2007), Fermüller (2008), Alma et al. (2011), Uckelman

et al. (2014), and Urzyczyn (2016).

2
From a formal point of view the present paper ‘fills in the gaps’ between these two proposals, showing

how to characterize the remaining implicational logics between intuitionistic logic and the associative Lam-

bek calculus. For the sake of simplicity we only consider logics which have the structural rule of exchange.

3
Readers interested in seeing what Prover-Skeptic games for a more involved language look like should

consult Urzyczyn (2016), which gives a detailed account of what can be done with Prover-Skeptic style game

semantics for Intuitionistic propositional and predicate logic.
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In the library two logic students, Penelope and Scott are arguing over the validity of the
argument from p→ q and q → r to p→ r. Penelope thinks that this argument is valid and is

trying to convince Scott, who is skeptical.

• Penelope (1): I reckon that p→ r follows from p→ q and q → r

• Scott (1): Yeah? Well if that’s so then suppose I grant you p→ q and q → r along

with p, how are you meant to get r?

• Penelope (2): If you grant me q I can get r from q → r (which you just granted).

• Scott (2): But why should I grant you q?

• Penelope (3): Well if you were to grant me p then I could get q from p→ q which

you granted at the start.

• Scott (3): But why should I grant you p?

• Penelope (4): Because you granted it to me at the start!

Penelope leaves the library triumphantly.

Figure 1: A Dialogue representing the kind of situation modelled by Prover-Skeptic

games.

ofL for all i ∈ Nat, and ifA andB are formulas then so isA→ B).
4

A sequent is a pair

〈Γ, A〉 of a multiset Γ of formulas, and a formula A, which we will write throughout

as Γ � A. Recall that a multiset is like a set, except that elements can occur multiple

times so, for example [A,A,B] and [A,B] are distinct multisets.
5

�roughout we will be concerned with fragments of the following natural deduc-

tion system, which result from dropping some or all of the structural rules listed.

Axioms

A �A

Introduction/Elimination Rules

Γ, A �B
Γ �A→ B

(→I)
Γ �A ∆ �A→ B

Γ,∆ �B
(→E)

Structural Rules

Γ, A,A �B
Γ, A �B

(W )
Γ �B

Γ, A �B
(K)

Natural deduction systems are rarely given in this ‘structurally explicit’ sequent-to-

sequent style, notable exceptions being the natural deduction system for intuitionistic

4
�roughout we use uppercase Roman lettersA,B,C,D,etc (with and without subscripts) as schematic

letters for formulas of L, uppercase Greek letters as schematic for multisets of formulas/sequents, and low-

ercase Greek letters as schematic for sequents.

5
For more information on multisets and their history see Singh et al. (2008).
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logic given in (Dummett, 1977, p.88f) which has an explicit rule of weakening (=(K)
above), or the system Nat in (Humberstone, 2011, p.114), in which it is shown that

weakening (there calledM) is derivable given the rules for conjunction. In both of these

cases the need for an explicit rule of contraction is avoided by working with sets rather

than multisets. Usually structural variation is captured in natural deduction systems

in terms of different policies regarding how assumptions can be discharged, but we

will find it particularly helpful to be fully explicit about the applications of structural

rules throughout.

3.2 Defining the Game
In order to streamline our description of Prover-Skeptic games it will be helpful to have

a few definitions on the table first. Given a multiset of sequentsS and sequentsβ, γ let

us write β ⇒∗(I) γ whenever we can derive γ from β using zero or more applications

of our introduction rules (in our case (→ I)), and S ⇒∗(E) β iff we can derive β from

the sequents inS via zero or more applications of our elimination and structural rules

(i.e. using zero or more applications of (→ E), (W ) and (K)). Finally we will say that

a sequent Γ �A is atom-focused wheneverA is a propositional variable.

Definition 3.1. (Dialogue Game) A dialogue over (Γ, A) is a (possibly infinite) sequenceS1, β1, S2, β2, . . .
where eachSi is a multiset of sequents, and eachβi a sequent where:

1. S1 = [Γ �A]

2. βi ⇒∗(I) σ for some non-axiomaticσ ∈ Si and some atom-focused sequentβi.

3. Si+1 ⇒∗(E) βi

In actual (informal) dialogues, we have participants asserting, denying, and query-

ing sentences, while here the corresponding sequents register the discursive commit-

ments incurred by a particular participant and what follows from those commitments.

We can read a sequent Γ � A as claiming that ‘you cannot grant me Γ without also

granting meA’. If we read sequents in this way, then we can understand Prover Skep-

tic games as defined above as having the following form.

• �e game begins by Prover offering the sequent Γ � A, claiming that if they are

granted Γ then they must also be grantedA.

• A Skeptic move involves them challenging some sequent (σ) offered by Prover in

their previous move, with Skeptic offering a sequent (β) of the form Γ � p that

entails the challenged Prover sequent. In offering the sequent Γ � p the Skeptic

is essentially saying ‘if you demonstrate to me that Γ � p then I’ll grant you that

σ is the case’.

• A Prover move in response to a Skeptic challenge (β) involves them offering a set

of sequents (S) from which they claim they can derive the Skeptic challenge (β)

using only elimination rules and the structural rules, and hence (given that the
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Skeptic challenge β entails the sequent σ which they challenged) the sequent

initially challenged by Skeptic.
6

What is not clear from the above description is how it is that the game ends, and

this is determined by the constraints placed on the structure of Skeptic moves. A Skep-

tic cannot challenge just any sequent offered by Prover, though, some challenges are

ruled out by their previous discursive commitments. In particular, because of the struc-

ture of our dialogues, a Skeptic can never challenge a sequent that is an instance of

(Id), as, in order for Prover to legally offer a sequent of the form A � A Skeptic will

have previously had to have granted A. In this way, then, we will say that Prover wins
a dialogue whenever there is no sequent which Skeptic can legally challenge, i.e. when

Prover is able to offer only instances of (Id).
7

Winning a dialogue does not mean that the sequent initially offered by Prover is

valid, though—it could be that Skeptic simply challenged the wrong sequents, and had

they played differently then there would have been no way for Prover to win. Instead,

what is needed in order for us to be able to ascertain that a sequent is valid is for Prover

to have a winning strategy—for there to always be a move which Prover can make in

response to any Skeptic challenge so that they eventually win.

Definition 3.2. (Winning Strategy) A winning strategy (for Prover) for the dialogue over (Γ, A)
is a tree where each node on each branch is labelled alternatingly with either P or S, where:

• �e root note of the tree is a P-node ([Γ �A]).

• Each branch is a dialogue over (Γ, A)

• Every P-node Si has an S-node child βi for each non-axiomatic sequent σ ∈ Si, where
βi ⇒∗(I) σ.

• Every S-node has a single P-node child.

• All branches are finite and end with a setS of instances of (Id).

In the appendix we show that if Prover has a winning strategy for the dialogue over

Γ, A then Γ �A is provable in the proof system given above.

In order to make it slightly more concrete how these games work let us consider

an example. In this, and all subsequent examples, we will label each move, for ease

of reading, with the labels ‘P:’ for ‘Prover’ and ‘S:’ for ‘Skeptic’, listing the contents of

the move after the colon. �roughout all our examples we will separate items in our

multisets using a semi-colon rather than a comma for ease of readability.

To see how everything works let us return to the dialogue between Penelope and

Scott given in Figure 1 to informally motivate the structure of Prover-Skeptic games.

�is is a dialogue over ([p→ q, q → r], p→ r), and proceeds as follows.

6
It is worth noting that we could be significantly more restrictive in what a Prover move looks like without

any loss of available winning strategies for Prover. For example, we could enforce conditions similar to those

laid down in (Shoham and Francez, 2008, p.175f) which force Prover to explicitly use a sentence granted by

Skeptic in order to derive the challenge. We will stick with the current definition for the sake of perspicuity,

leaving a fuller discussion of this issue to the Appendix.

7
See (Dutilh Novaes and French, 2018, p.149) for an example of where this situation needs to be made

slightly more nuanced.
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P: [p→ q, q → r � p→ r]

Prover begins by stating the claim they wish to defend.

S: p→ q, q → r, p � r

Skeptic responds by challenging the only available sequent, requesting that Prover

demonstrate how they can get here.

P: [q → r � q → r ; p→ q, p � q]

Prover responds by providing a collection of sequents from which they can derive

the challenge via (→ E).

S: p→ q, p � q

Skeptic challenges the only non-axiomatic sequent in the previous Prover move.

P: [p→ q � p→ q ; p � p]

Prover replies offering two axiomatic sequents.

S: No AvailableMove

As all of the sequents which Prover offered are axioms there are no further moves

available to the Skeptic.

Given that at no stage could Skeptic have made any other move, the above dialogue

corresponds quite directly to a winning strategy for Prover.

3.3 Internalization & Cooperation
Any successful formalization of the built-in opponent conception of deduction must

be able to explain how it is that Skeptic is apt to be internalized, ideally shedding some

light in the process on why it is Skeptic’s role which has become internalized rather

than Prover’s. As it turns out, Prover-Skeptic games give quite an elegant account of

why this is the case. As can be seen in the above example, Prover has quite a lot of free-

dom in determining which sequents to offer as part of their move, in fact in the above

presentation Prover is completely unconstrained in which sequents they can offer so

long as they can be used to derive the challenge using only elimination and structural

rules. As it turns out we could also constrain Prover in various ways without alter-

ing which sequents Prover has winning strategies for (for example, by forcing them

to either offer a singleton multiset (and derive the challenge via structural rules) or in

replying to a skeptic move Γ � A to offer a multiset of sequent which includes the se-

quent B � B for some B ∈ Γ. Even in these cases Prover has quite a lot of leeway in

determining which sequents to offer. By contrast, once they have determined which

sequent they are going to challenge, Skeptic’s move is completely deterministic in the

sense illustrated by the following simple lemma.

Lemma 3.3. Suppose thatσ = Γ �A, where:
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• A = B1 → (. . . (Bn−1 → (Bn → pi)) . . .)

• Γ′ = [B1, . . . , Bn].

�en for all atom-focused sequentsβi, we haveβi ⇒∗(I) σ iffβi = Γ′,Γ � pi.

�is means that Skeptic’s moves do not require any form of creativity to perform.

Given that their role is essentially algorithmic it is easy to see how it is apt to be per-

formed ‘offline’ by a Prover who follows this method.

�e other main feature which a formalization of the built-in opponent approach

would have to explicate is the mix of higher-level cooperation and lower-level adver-

sariality between the two players. �e adversariality is present here due to the con-

flicting goals of the two players. �e higher-level cooperation can be seen not just in

the fact that the two players are assumed to follow the rules (that variety of coopera-

tion is, in this setting, largely uninteresting), but also in the structure of Prover and

Skeptic moves. In particular Skeptic doesn’t simply object to a sequent put forward by

Prover and exclaim ‘that’s invalid!’. Instead they make it clear to Prover what Prover

must do in order to convince them. Similarly, Prover doesn’t just put forward any ran-

dom collection of sequents, but instead some from which the challenge sequent could

be derived. We could even enforce further cooperation between Prover and Skeptic by

placing the further restrictions mentioned above on the structure of Prover moves. In

talking about the importance of the mix of higher-level cooperation and lower-level

adversariality Catarina Dutilh Novaes says the following

�e adversarial component is what accounts for the property of necessary truth

preservation; the cooperative component is what explains the ideal of perspicuity

and explanatoriness. (Dutilh Novaes, 2015, p.599f)

So not only are adversarial and cooperative components present in Prover-Skeptic

games, they appear to be present in the right way. Furthermore, as we will argue in the

next section, it also helps to make clear how proofs can have explanatory value.

4 A Route to Pluralism
Prover moves are are meant to do more than merely show that the premises follow from

the conclusion, they’re meant to be explanatory. �e notion of explanation we have in

mind here is something broadly ‘pragmatic’ in nature, one which follows Van Fraassen

(1988) in thinking of explanations as involving the answers to why-questions. Under-

standing explanation as having this feature allows us to show how Prover moves are

meant to be explanatory: Prover moves are answers to the question ‘why does this fol-

low’? A why-question is a request for information of a certain sort and, as shown in

(Van Fraassen, 1988, p.153), what information is requested can differ from context to

context. �is audience-relativity of explanations is seen as a central aspect of the ex-

planatoriness of proofs when viewed from the BIO perspective.

�e main feature of the dialogical account of explanatoriness in mathematical proofs

defended here is that explanatoriness is ‘in the eyes of the beholder’: it is not a

property of a proof as such, but rather it emerges from the relation between a proof

and a given audience. (Dutilh Novaes, 2018, p.91)
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So according to the BIO conception of deduction what counts as an adequate re-

sponse to a Skeptic challenge will be relative to a particular community of inquiry, the

putative intended audience of the proof. As we will see, it is the way in which what

counts as an explanation is relative to the interests and ends of particular communi-

ties which potentially provides a route to an interesting form of logical pluralism.

Everything we have said above is perfectly compatible with logical monism, noth-

ing that we have said so far entails that the different constraints which are actually

placed on what counts as a response to a Skeptic challenge by actual communities will

have any repurcussions about which arguments are deductively valid. Indeed, many

of the different constraints placed on what counts as an adequate response to a Skeptic

challenge will not affect validity judgements, but instead concern issues pertaining to

the level of detail required in, for example, teaching situations as opposed to research

mathematics (Hersh (1993)).
8

By and large concerns about granularity and ‘level of de-

tail’ are absent from the present account, although one can see some remnant of it in

the following example. Suppose we are at a stage in a dialogue where the previous

Skeptic challenge is as follows.

S: p→ (q → r), p→ q, p, p � r

In such a situation Prover might reply in at least the following two ways:

P: [p � p ; p→ q � p→ q ; p→ (q → r) � p→ (q → r) ; p � p]

P: [p, p→ q � q ; p→ (q → r) � p→ (q → r) ; p � p]

Both of these are multisets of sequents from which one can derive p→ (q → r), p→
q, p, p � r simply using (→ E), but the second of these provides more details as to

how this is to be done in the sense that only two applications of (→ E) are required

to derive the challenge, while in the first case three are required. A situation where

the norms on explanation disallowed the first prover move, but not the second, would

result merely in there being fewer winning strategies for some sequents, not in there

being fewer sequents which have winning strategies.

�is raises an important question: are there contexts/communities whose explana-

tory projects place constraints on what counts as an adequate response to a Skeptic

challenge which have repercussions for what arguments are valid? To the extent to

which the answer to this question is ‘yes’ we can see an interesting form of logical

pluralism arising out of the Built-in Opponent conception of deduction according to

which, contra (Beall and Restall, 2006, p.88), what arguments count as valid are rela-

tive to communities of inquiry, and their practical interests. What I will do in the rest

of the paper is first give some reasons for thinking that the answer here might indeed

be ‘yes’, and then examine the resulting variety of logical pluralism—addressing the

question of whether it is indeed a form of logical pluralism at all!

8
Hersh claims that there are two different roles which proofs play in these two contexts (explaining in

teaching situations, and convincing in research ones). �e differences which Hersh points to, though, are

largely ones concerning granularity and level of detail.
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4.1 Case 1: Geometry and Contraction
We will begin by looking at what is both the most interesting, and also the most con-

tentious, potential example of a community in which the norms on explanations result

in different inferences being valid. �is case is drawn from mathematicians working in

the foundations of geometry at the beginning of the 20th century. In particular, Pam-

buccian (2004) points out that mathematicians in that period were concerned with not

just which axioms are used in proving a particular theorem, but also with the number
of times such axioms are, or must, be appealed to in proving such a theorem. For ex-

ample, G. Hessenberg in 1905 proves that Desargues axiom follows from a collection

of axioms for plane projective geometry along with a threefold use of the Pappus ax-

iom. Pambuccian notes that all known proofs both require, and explicitly mention,

this threefold use. �is is precisely the kind of situation which Mares and Paoli claim

put pressure on the validity of structural contraction:

“It makes perfect sense to say, for example, that a given mathematical theorem T
‘follows from’ the axioms of the theory it belongs to. Are we thereby claiming that

all the axioms of the theory have been used to establish it, or even that they are

relevant in content to it? No, of course: only that whenever we grant the axioms

themselves, we are committed to accept T . �is is a sense of ‘follows from’ for

which weakening and contraction seem beyond doubt. But it does not appear to

be the same meaning that we have in mind when claiming that T ‘follows from’,

say, a lemma L. For us to appropriately affirm that, it seems necessary that L be

at least used in the proof of T .

Yet, there is more to it. Suppose you have a proof of T that requires two applica-

tions of the axiom of choice and that we challenge you to find a proof where the

same axiom is applied only once. You may or may not succeed–if you don’t, per-

haps you will start wondering whether Structural Contraction is adequate for this

particular sense of ‘follows from’.”(Mares and Paoli, 2014, p.452f)

Here we can see Mares and Paoli offering an argument in favour of rejecting con-

traction in precisely cases like this one. According to the present account this suggests

that what we can see here is a change in what counts as an explanatory proof—i.e. a

change in what counts as an adequate response to a Skeptic challenge—arising out of

the foundational interests of turn of the century geometers. We need not give some ac-

count of why it is that geometers at the turn of the 20th century appear to have been so

concerned with the number of times axioms are appealed to in proving theorems, only

that they did seem to place such a constraint on what counts as a suitably explanatory

proof.
9

So it appears that here we have a community in which it is not sufficient that you

show that the challenged claim follows merely ‘of necessity’ from the claims provided,

but that you must also indicate the extent to which different claims are used in show-

ing this, a community in which explanatory proofs need to not only show that a given

conclusion follows from some premises, but also how many copies of those premises it

follows from.

9
It should be noted, of course, that this is not the only reconstruction of the situation here which is pos-

sible. Pambuccian himself favours one according to which this concern with the number of times a given

axiom must be appealed to as reflecting a concern with the ‘fine points of proof-theory’.
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4.2 Case 2: Hypothetico-Deductivism, Confirmation, and Weaken-
ing

Our other primary case study concerns the Hypothetico-Deductive model of theory

confirmation. Hypothetico-Deductivism is a method for confirming hypotheses by

deriving novel predictions and then verifying them. In particular it involves taking

a theory T and a hypothesis H and then deriving some prediction e from T and H
which cannot be derived from T alone. According to Glymour (1980) (as summarized

by Waters (1987, p.453)) Hypothetico-Deductivism is “hopeless as a method of confir-

mation because it cannot maintain the condition of relevance between a hypothesis

and the evidence which confirms it”. What is pointed out particularly clearly in Wa-

ters (1987) is that Hypothetico-Deductivism can be saved if we formulate it in terms of

a Relevant logic à la Anderson and Belnap (1975) (related suggestions are also made in

Schurz (1991) and Gemes (1993)).

In particular Glymour’s complaint can be seen as suggesting that when we are deal-

ing with theory confirmation, there needs to be an appropriate connection of relevance

between theory, hypothesis and evidence in order for a given proof to show that some

evidence confirms a hypothesis. �is means that in contexts where we are attempting

to explain why the combination of a given theory with a hypothesis we are trying to

confirm derives a novel prediction, we will have to refrain from using the structural

rule of weakening. Otherwise, we will be able to move from seemingly genuine cases

of confirmation (for example that the Stark Effect confirms quantum mechanics) to

spurious ones (like the Stark Effect confirms quantum mechanics and the infallibility

of the Pope).

So for a Prover move to be sufficiently explanatory in the case where we’re attempt-

ing to show that a given hypothesis is confirmed by some evidence it must use all of the

sentences which are granted by Skeptic in order to derive the Skeptic’s challenge. So it

seems like in cases where our proofs are aimed at an audience with the goal of showing

that evidence confirms a hypothesis that, following Waters (1987), we are in a situation

where appropriate Prover moves are constrained in such a way as to not involve weak-

ening.
10

5 Explanations and Pluralism
�e picture that emerges out of all of this is as follows. Whether an argument is valid

or not depends on whether Prover has a winning strategy in a Prover-Skeptic game,

where each of their moves are required to be not only truth-preserving, but also suit-

ably explanatory. �at is to say, Prover has to not only show that the argument is valid,

but also show why the argument is valid. What we have canvassed above, though, are

10
Of course, this does not allow us to escape all problems concerning confirmation (something which is

not noted by Waters, but is noted by Routley and Nola (1991, p.17)). For example, as contraposition is still valid

in the obvious way of extending this logic with negation (putting us in the vicinity of the {→,¬}-fragment

of the relevant logic R) we will still run up against Hempel’s paradox of the ravens. Of course, the move to

thinking of confirmation in terms of a conditional which does not satisfy weakening allows us to deal with

Hempel’s paradox by modifying Nicod’s criteria for instantial confirmation in the way discussed in Goddard

(1977).
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two potential situations where requirements on what counts as an explanation of why

something follows results in certain arguments no longer being valid, not because the

argument isn’t truth preserving, but rather because it has no sufficiently explanatory

proof. �is results in a picture of logic on which what counts as valid is dependent

on the audience that the argument is intended for—different communities of inquiry

having different standards on what counts as an explanatory proof, and this can po-

tentially have repercussions for which arguments have winning strategies.

It is important to note that these changes in what counts as an explanatory proof

only affect Prover moves by restricting what structural rules they are able to appeal

to in deriving the Skeptic’s challenge. �is is particularly important given that it is

Prover’s job to provide explanations to Skeptic as to why things follow. Let us look at

an, admittedly simple and rather contrived, example taken from (Waters, 1987, p.459).

Suppose we have a theory which draws a connection between Ravens and Blackness so

that it claims that ∀x(Rx→ Bx). Does such a theory claim that there is a connection

between mammals having hair (S), and Ravens being black? Against a hypothetico-

deductivist background, this amounts to the question of whether we can show that

∀x(Rx → Bx) � S → ∀x(Rx → Bx) is valid? Now, treating ∀x(Rx → Bx) as an

atomic sentence, we have the following situation:

P(1): [∀x(Rx→ Bx) � S → ∀x(Rx→ Bx)]

S(1): S,∀x(Rx→ Bx) � ∀x(Rx→ Bx)

If we are in an explanatory context in which the rule (K) of weakening cannot be

applied then this is the best that Prover can do, and at this stage cannot offer any se-

quents to derive the Skeptic challenge.
11

If, instead, Prover was merely trying to con-

vince Skeptic that this inference was truth preserving (an explanatory context in which

weakening is certainly allowed), then they could reply to the Skeptic challenge S(1) with:

P(2): [∀x(Rx→ Bx) � ∀x(Rx→ Bx)]

So we can see in this simple example how, depending on the explanatory context,

what counts as an admissible Prover move can result in differences in which arguments

are valid. In the appendix we show that if Prover has a winning strategy for a dialogue

which makes use of some subset of the structural rules {(K), (W )} then that sequent

is derivable in our proof system using the same subset of structural rules.

So is this a kind of logical pluralism?
12

�ere is good reason for thinking so. What

we have outlined above is a relativist picture of logic, according to which what counts as

the correct account of validity is relative to what counts as an explanatory proof. �is

makes which logic is correct, given the pragmatic picture of explanation used here,

relative to communities of inquiry and the explanatory projects they are engaged in.

As noted in (Cook, 2010, p.493), for this to result in a pluralism about validity would

11
Why? Because if Prover had a winning strategy for what in the Appendix we call a (W )-dialogue for

S,∀x(Rx → Bx)�∀x(Rx → Bx), then it would (by Proposition A.12) have a winning strategy in a strict

(W )-dialogue, which it does not as there is no strict Prover responce that can be made in a (W )-dialogue

at this point.

12
I am indebted to an anonymous referee for pressing me on this point.
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require there to be more than one relevant account of what counts as an explanatory

proof which makes a difference for which arguments are valid (this second qualification is

implicit in Cook’s discussion).

Given that, as van Fraassen notes (Van Fraassen, 1988, p.143), what counts as an

explanation can vary from context to context, it follows that on the account argued for

here, whether an argument is valid can also vary from context to context. �is is not

so alien a thought, discussed extensively in Shapiro (2014), and advocated for in some

detail by Caret (2017). Unlike Caret’s approach, the present approach makes use of

already existing features of contexts (those which are required to accommodate ques-

tions) in order to explain how whether an argument is valid can vary from context to

context, and doesn’t require the postulation of a separate ‘deductive standard’.
13

6 Conclusion
�e Built-In Opponent conception of deduction gives an account of logical consequence

in terms of dialogues where the contributions of both parties—Prover and Skeptic—

are required to be suitably explanatory, Skeptic explaining what it would take to con-

vince them, and Prover explaining why a give sequent is valid. But the kinds of ex-

planations which Prover is required to give here are ones which are dependant on the

projects of particular communities of inquiry. �is opens up the possibility that what

counts as valid may be dependant on what it takes to count as an appropriate explana-

tion.

Whether the BIO conception of deduction gives rise to logical pluralism is an em-

pirical matter, having to do with the explanatory projects of extant communities of

inquiry. Above we’ve given two examples of communities of inquiry which illustrate

how it may be that what counts as an explanation in different communities may have

logical repercussions.

�e resulting picture of the connections between logical consequence and the ex-

planatory projects of different communities of inquiry allows for a natural answer to

the explanatory challenge with we saw at the beginning of the paper. Recall that an

answer to the explanatory challenge involves saying both what it is to endorse a con-

sequence relation—explaining how there can be a plurality of correct logics—as well

as saying how these different notions of logical consequence accord with an intuitive

notion of logical consequence. Say that consequence relation accords with a constraint

on explanations when an argument is valid according to that consequence relation iff

Prover has a winning strategy in the Prover-Skeptic game where each of their moves

abides by that constraint. �en to endorse a given consequence relation is to be en-

gaged in an explanatory project which places constraints on explanation which accord

with that consequence relation. If there are multiple different explanatory projects

which accord with distinct consequence relations, then we have a genuine form of log-

ical pluralism. Moreover, all of these different consequence relations relate to a single

13
Furthermore, Caret proposes his approach as a way of defending Beall & Restall’s version of pluralism

against a variety of objections, while the present approach is proof theoretic in character, bearing a closer

resemblance to the picture outlined in Restall (2014).
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given, and hopefully intuitive, notion of logical consequence, namely that captured by

the Built-In Opponent conception of deduction.
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Appendix: Adequacy Proofs
In this appendix I provide appropriate adequacy proofs for the kinds of Prover-Skeptic

games which result from limiting which structural rules can be used by Prover in de-

riving the Skeptic challenge.

Definition A.1. Let us call a dialogueD in which no Prover moves make use of contraction an
affine dialogue (or (K)-dialogue), one in which no Prover move makes use of weakening a
relevant dialogue (or (W )-dialogue), and one in which no Prover move makes use of either
weakening or contraction a linear dialogue. Note that a dialogue is affine and relevant iff it is
linear.
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Definition A.2. Suppose that S ⊆ {(W ), (K)}. Let us say that`S Γ � A iff there is a proof
of Γ �A in which the only structural rules which appear are those in S.

As it turns out the ‘Completeness’ direction of this proof is relatively simple due to

the direct connection between Prover and Skeptic moves and derivations.

Proposition A.3 (‘Completeness’). Let S ⊆ {(W ), (K)}. If there is a winning strategy for
Prover over the S-dialogue (Γ, A) then`S Γ �A.

Proof. Suppose that D is a winning strategy for the S-dialogue over (Γ, A). What we

will show is that for any subtreeD′ ofD whose root is a P-node (Σ) that all σ ∈ Σ are

S-derivable.

In the case where σ is an axiom this is trivial, so suppose that σ ∈ Σ is not an

axiom, and let β be the skeptic challenge for σ. As the strategy is a winning strategy it

follows that the S-node β has a P-node descendant Σ′. By the induction hypothesis it

follows that we have `S σ
′

for all σ′ ∈ Σ′. Furthermore, as each branch in the strategy

must be a S-dialogue it follows that Σ′ ⇒∗(E) β. So by pasting together derivations

for each of the σ′ appropriately we can, using the elimination rules and the structural

rules S, construct a derivation for β, allowing us to conclude that `S β. But we know

that β ⇒∗(I) σ and so by applying successive introduction rules to β we can derive σ,

allowing us to conclude `S σ as desired.

�e more interesting direction is ‘Soundness’. �e main obstacle to soundness

arises out of the way in which we are only limiting Prover’s moves (and thus, consid-

ered proof-theoretically, only placing constraints on the E-sections of proofs). What

we will now show is that we are nonetheless able to capture the above mentioned no-

tions of S-consequence by showing that we can always permute the structural rules

over instances of (→ I) (Lemma A.9), and thus by making use of the normal form the-

orem, can transform every proof into one in which structural rules are only applied in

the E-sections of a proof (�eorem A.10).

Definition A.4 (Normal Form (Prawitz, 1965)). A proof is in normal form if no formula
occurrence is both the consequence of the application of an I-rule, and the major premise of the
application of anE-rule.

Definition A.5. A stack in a proofπ is a sequence of sequents Γ0 �A0, . . . ,Γn �An fromπ
s.t.

1. Γ0 = {A0} (i.e. Γ0 �A0) is a leaf sequent fromπ)

2. Γi+1 �Ai+1 is immediately below Γi �Ai inπ for 0 ≤ i < n.

3. For 0 ≤ i < n the sequent Γi �Ai is not a minor premise of an application of (→ E).

A stack of order 0 ends in the endsequent ofπ; a stack of ordern+1 ends in the minor premise
of an application of (→ E) whose major premise belongs to a stack of ordern.

Our notion of a ‘stack’ of sequents is just the obvious lifting of the standard notion

of a ‘track ’ of formula occurrences in a proof (on which cf. (Troelstra and Schwichten-

berg, 2000, p.143)), but will allow us to be more explicit about our talk of the premises
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involved in tracks in proofs. Just like with a track, in a normal derivation it is easy to

see that every stack of sequents can be split up into three parts: an E-part, followed

by a ‘minimum sequent’, followed by an I-part. In the I-part all of the rules used are

I-rules (or structural rules), in theE-part all the rules used areE-rules (or structural

rules).

Normal proofs alone will not be sufficient for our proof below: we will need our nor-

mal proofs to satisfy two additional requirements concerning the ‘minimal sequents’

in stacks, and the applications of structural rules. In particular we will be interested

in proofs in which the minimal sequent in each stack in a proof is of the form Γ � pi
for some propositional variable pi (call a proof in which this is the case one in long nor-
mal form), and in which no applications of structural rules appear in the I-part of a

stack. As it happens though, every normal proof (and every proof whatsoever) can be

transformed into one which both of these properties.

Proposition A.6. Every proof in normal form can be transformed into one in long normal form.

Proof. We can reduce the minimal formula in any track into one which is atomic by re-

peatedly applying the following reductions, each of which both reduce the complexity

of minimal formula while still retaining the structure of the proof.

π0
.
.
.
.

Γ �A→ B
.
.
.
.
π1

7→

π0
.
.
.
.

Γ �A→ B A �A
Γ, A �B

(→E)

Γ �A→ B
(→I)

.

.

.

.
π1

Note, also, that these reductions also preserve the rank of tracks.

�e lambda terms for proofs in normal form are inβ-normal form, and those which

are in long normal form are in what is sometimes called βη-long normal form or βη−

normal form.

Definition A.7 (Top-Heavy Normal Form). Say that a proofπ is in top-heavy normal form

if it is in long normal form and no applications of structural rules appear in any I-part of the proof.

�eorem A.8 (Normal Form �eorem (Prawitz, 1965)). (i) If there is a proof of Γ �A, then
there is a normal proof of Γ �A; (ii) If there is a proof of Γ �A, then there is a proof of Γ �A in
long normal form.

Lemma A.9 (Permuation of Structural Rules). Suppose that π is a (normal) proof. �en
there is an equivalent (normal) proof of the same height and of the same endsequent in which all
occurrences of structural rules appear only after applications of (→ E) or axioms.
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Proof. Proof is by induction on the number of structural rules which appear after any

given instance of (→ I). If that number is zero, then we are done. Otherwise we have

a situation like the one on the ones on the left in the following diagram, in which case

we can transform the proof to one on the right, ‘pushing’ the structural rule over the

instance of (→ I).

π
.
.
.
.

Γ, A �B
Γ �A→ B

→I

Γ, C �A→ B
(K)

7→

π
.
.
.
.

Γ, A �B
Γ, A,C �B

(K)

Γ, C �A→ B
→I

π
.
.
.
.

Γ, C, C,A �B
Γ, C, C �A→ B

→I

Γ, C �A→ B
(W )

7→

π
.
.
.
.

Γ, C, C,A �B
Γ, C,A �B

(W )

Γ, C �A→ B
→I

Repeatedly doing this will result in all instances of structural rules appearing directly

after applications of modus ponens or axioms.

�eorem A.10. If a sequent Γ�A is S-provable then it has a S-proof in top-heavy normal form.

Proof. If the sequent is provable then by �eorem A.8 it has a proof in long normal

form. By Lemma A.9 we can permute all structural rules so that they appear only after

applications of (→ E). In any given thread, then, this will result in no structural rules

being applied in the I-section of the proof, putting it in top-heavy normal form.

Given a proof π let us say that a sequent Γ � A in π is challengeable iff Γ � A is not

an axiom, and is the final sequent in a stack. Further, let us say that the height above
a challengeable sequent Γ � A is equal to the number of stacks of greater rank than the

stack in which Γ �A occurs.

Proposition A.11 (‘Soundness’). Let S ⊆ {(W ), (K)}. If`S Γ �C then there is a winning
strategy for Prover over the S-dialogue (Γ, C).

Proof. Suppose that `S Γ � C. �en by �eorem A.10 we know that it has a proof π in

top-heavy normal form. What we will now do is use this proof to construct a winning

strategy for the S-dialogue over (Γ, C).

We proceed by induction on the height above challengeable sequents Θ � A in π.

For the basis case suppose that we have a challengeable sequent Θ�A the height above

which is 0. �is means that the stack ending in Θ � A cannot contain anE-segment.

Furthermore, as Θ � A is challengeable it follows that Θ 6= [A]. It is easy to see that

this means that the stack ending in Θ �Amust be of the following form:

pi � pi,�pi → pi

so thatA = pi → pi for some formula propositional variable pi, and Θ is empty. �e

S-challenge of �pi → pi is the sequentpi�pi, which Prover can derive from itself using
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the elimination rules and structural rules 0 times. So we have the following winning

strategy for Prover:

(pi � pi)S :

({pi � pi})P :

As the Skeptic cannot challenge an axiom, this strategy is a winning strategy for Prover.

For the induction hypothesis suppose that for all challengeable sequents Ξ�B the

height above which is≤ nwe have a winning strategyD[Ξ�B]. Suppose now that we

have a challengeable sequent Θ �A the height above which is n+ 1. �en the Skeptic

challenge for Θ�Awill be Θ,Θ′ � pi, where pi is the rightmost propositional variable

inA. It follows that as π is in top heavy form that this is the minimum sequent in the

stack ending in Θ�A. LetA0 �A0 be the first sequent in the stackT ending in Θ�A,

and letC be the multiset of sequents Γ∗1 �A∗1, . . . ,Γ∗n �A∗n where each of the Γ∗i �A∗i
is a minor premise of an application of (→ E) whose major premise is in T . �en it is

clear that

[A0 �A0] ∪ C ⇒∗(E) Θ,Θ′ � pi
Moreover, each of the challengeable formulas in C is the final formula of a track the

height above which isn, and so by the induction hypothesis we have a winning strategy

for all such sequents. �is yields the following winning strategy for Prover, where Γ′1 �
A′1, . . . ,Γ

′
m �A′m (m ≤ n) are all the challengeable sequents inC

(Θ,Θ′ � pi)S :

([A0 �A0] ∪ C)P :

D[Γ′1 �A′1] . . . D[Γ′m �A′m]

Pasting together all these strategies, and adding S : ([Γ � A]) will yield a win-

ning strategy for Γ � C. Note, also, that as we have generated this strategy from an

S-derivation of Γ � C that each branch of the winning strategy is an S-dialogue, and

thus we have a winning S-strategy.

As mentioned earlier, the above results make use of a more liberal conception of

what constitutes a Prover move, where they are not required to make explicit use of the

Skeptic’s offer in order to derive the challenge. As it happens, though, the above proofs

can also be use to show that we could have used the following, stricter, understanding

of what a Prover move consists in:

• A Prover move Si+1 responding to a Skeptic challenge βi = Γ � p consists of

them offering a multiset of sequents Γj �Aj where:
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– For some sentence α = A1 → (. . . → (Am → p) . . .) we have α � α ∈
Si+1, where α ∈ Γ.

– �e remaining sequents in Si+1 are of the form Γj �Aj.

– �e multiset union of the Γjs should be:

* Identical to Γ in a linear dialogue

* Be a sub-multiset of Γ in an affine dialogue.

* Have the same underlying set as Γ in a relevant dialogue

* Otherwise the underlying set of the multiset union of the Γjs should

be a subset of the underlying set of Γ.

Call a dialogue in which Prover makes use of only moves like that above a strict dia-
logue. �en we have already essentially shown the following.

Proposition A.12 (‘Soundness & Completeness for Strict Dialogues’). Let S ⊆ {(W ), (K)}.
�en, `S Γ � C if and only if there is a winning strategy for Prover over the strict S-dialogue
(Γ, C).

Proof. Completeness is exactly as in Proposition A.3. For soundness note that by Def-

inition A.5 that the sequent A0 � A0 appealed to in the proof of Proposition A.11 will

be the major premise of an application of Modus Ponens, and so must be of the form

A1 → (. . .→ (Am → pi) . . .) as desired.

Strict Dialogues are useful for demonstrating that Prover cannot have a winning

strategy for certain sequents.
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