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Abstract

In Wehmeier (2004) we are presented with the subjunctive modal lan-
guage, a way of dealing with the expressive inadequacy of modal logic by
marking atomic predicates as being either in the subjunctive or indica-
tive mood. Wehmeier claims that this language is expressively equivalent
to the standard actuality language, and that despite this the marked-
unmarked dichotomies are not the same in the two languages. In this
paper we will attend to Wehmeier’s argument that this is the case, and
show that this conclusion rests on what might be considered an uncharita-
ble stipulation concerning what it is for a formula in the actuality language
to be true in a model.

1 Introduction

The expressive limitations of the standard language of modal logic are well
known. The traditional way of fixing this problem of expressive inadequacy is
to enrich our language with the addition of an actuality operator A as is done
in, for example, Crossley & Humberstone (1977) and Davies & Humberstone
(1980), but this is not the only way of solving this problem. Rather than
singling out those sentences which are to be evaluated indicatively, as is done
by the actuality operator, and make the default mood of formulas subjunctive,
we could instead single out those which are to be evaluated subjunctively, and
make the default mood of formulas indicative. This is the approach taken in
Humberstone (1982) where the prospects of adding a subjunctive operator S to
the language of standard modal logic are investigated – resulting in the language
we will refer to as LSS when we need to discuss it later.1 A similar approach to
this is taken in Wehmeier (2004) where, rather than introducing a new operator
to the language of standard modal logic, it is proposed that we instead add
another sort of atomic predicates to our language, marked with a superscript s

∗This is a preprint. The full version has appeared as: French, R. (2013), “Expressive
Power, Mood, and Actuality”, Synthese, Vol. 190, 1689-1699. [doi]

1Wehmeier raises some issues relating to favouring LSS over his Subjunctive Modal Logic
in (Wehmeier, 2005, p.201), which are discussed in (Humberstone, 2004, p.46f). The language
which we have been calling LSS is called LC in Humberstone (1982) due to connections be-
tween this kind of language and some considerations of H.-N. Castañeda’s which are discussed
in §2 of Humberstone (1982).
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– the old sort of atomic expressions to be evaluated indicatively, and the new
ones subjunctively.

It appears as if the only difference between these two languages is which
mood is marked and which is left unmarked – the actuality language marking the
indicative mood, and the subjunctive language the subjunctive mood. Wehmeier
claims, though, that while his language is expressively equivalent to the actuality
language, it nonetheless differs in its marked/unmarked dichotomies. What we
will argue here is that this difference in the marked-unmarked dichotomies in
the two languages is due to an artefact of Wehmeier’s treatment of the actuality
language. To show this first, in §2 we set the scene for the ensuing discussion
– giving the details of the two languages and the expressive equivalence result
from Wehmeier (2004). In §3 we explicate Wehmeier’s comments concerning
the difference in marked-unmarked distinctions between the two languages, and
argue that Wehmeier is too hasty in putting aside a potential objection, before
finally in §4 looking at where this leaves the relationship between the actuality
language and Wehmeier’s subjunctive language.

2 The Logic of Actually and Wehmeier’s Sub-
junctive Modal Logic

In the interests of simplicity we consider only the propositional versions of these
two languages, noting that our argument will extend to the first-order case
with very little effort. The first language LS will be constructed out of denu-
merably many (indicative) propositional variables p1, . . . , pn, . . ., denumerably
many (subjunctive) propositional variables ps1, . . . , p

s
n, . . . – each of which corre-

sponds to the appropriate indicative propositional variable – using the boolean
connectives {∧,¬} (and, not) and the modal operator ♦ (possibility). The sec-
ond language LA will be constructed out of denumerably many propositional
variables p1, . . . , pn, . . . using the boolean connectives {∧,¬} (and, not) and the
modal operators ♦ (possibility), and A (actually).2 Say that a formula in LS is
subjunctively closed iff every occurrence of a subjunctive propositional variable
psi lies within the scope of a modal operator. So, for example,the formula ♦ps

will be subjunctively closed, while the formula ♦ps ∧ qs will not be.
Our semantic structures will be simplified Kripke models for S5 (〈W,@, V 〉)

with a distinguished point @ ∈W corresponding to the actual world. Truth of a
formula ϕ at a point x in a modelM = 〈W,@, V 〉 according to LS (“M 
x ϕ”)

2We address any worries one might have about the potential redundancy of the actuality
operator in propositional modal logics in note 6 below.
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will be defined inductively as follows.

M 
x pi ⇐⇒ @ ∈ V (pi).

M 
x p
s
i ⇐⇒ x ∈ V (pi).

M 
x ϕ ∧ ψ ⇐⇒ M 
x ϕ and M 
x ψ.

M 
x ¬ϕ ⇐⇒ M 6
x ϕ.

M 
x ♦ϕ ⇐⇒ ∃y ∈W s.t. M 
y ϕ.

Similarly, we will define truth of a formula ϕ at a point x in a model M =
〈W,@, V 〉 according to LA (“M |=x ϕ”) inductively as follows.

M |=x pi ⇐⇒ x ∈ V (pi).

M |=x ϕ ∧ ψ ⇐⇒ M |=x ϕ and M |=x ψ.

M |=x ¬ϕ ⇐⇒ M 6|=x ϕ.

M |=x ♦ϕ ⇐⇒ ∃y ∈W s.t. M |=y ϕ.

M |=x Aϕ ⇐⇒ M |=@ ϕ.

One important fact about subjunctively closed formulas which we will need
to make use of below is that they are invariant in the sense recorded by the
following Lemma.

Lemma 1. Suppose that ϕ is a subjunctively closed formula from LS. Then for
all modelsM = 〈W,@, V 〉 and all points x, y ∈W we have the following.

M 
x ϕ if and only ifM 
y ϕ.

Intuitively speaking, two languages are expressively equivalent when they
are able to discriminate between the same models. In the particularly strong
sense which will be at issue here, this will mean that languages L1 and L2 are
expressively equivalent when for every formula ϕ ∈ L1 there is a formula ψ ∈ L2

such that ϕ and ψ are true in the same models. Writing M |=Li ϕ to mean
(where ϕ ∈ Li) that ϕ ∈ Li is true in the Li sense in the model M, this leaves
us with the following definition.

Definition 1. Two languages L1 and L2 are expressively equivalent iff we have
the following conditions satisfied

∀ϕ ∈ L1∃ψ ∈ L2(∀M :M |=L1
ϕ ⇐⇒ M |=L2

ψ).

∀ψ ∈ L2∃ϕ ∈ L1(∀M :M |=L1
ϕ ⇐⇒ M |=L2

ψ).

Applying this notion to pairs of languages requires us to be clear on what it
is for a formula to be true in a model – otherwise the notion M |=Li ϕ will be
undefined. In the modal case we have two obvious candidates for what it is for
a formula ϕ to be true in a model M = 〈W,@, V 〉. On the one hand we could
say that a formula is true in a model whenever it is true at the actual world in
that model – call this real-world truth. On the other hand we could say that
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a formula is true in a model whenever it is true at all worlds in that model –
call this general truth. Given a notion of truth at a point in a model M |=x ϕ,
we will denote ϕ being real-world true as M |=r ϕ, and it being generally true
as M |=g ϕ. This terminology is an adaptation of the distinction between real-
world validity and general validity from Davies & Humberstone (1980). Using
this terminology a formula ϕ will be real-world valid when it is real-world true
in all models, and generally valid when it is generally true in all models. We
will not have much to say about general truth here, although we will have quite
a bit to say later about a further way of thinking about truth in a model which
also yields general validity in the same way general truth does.

Wehmeier is very clear that truth in a model for formulas in LA is to be
understood as real-world truth – referring to it as the “received sense” of truth
in a model for LA. Wehmeier also says that, for subjunctively closed formulas at
least, real-world truth and general truth coincide (this following in the obvious
way from Lemma 1). Accordingly we will, for the moment, regard truth in a
model as real-world truth for formulas in LS which are subjunctively closed.
So, according to Wehmeier we have truth in a model for formulas of LA being
defined as |=r, and truth in a model for subjunctively closed formulas of LS

being defined as 
r. Given this understanding of what it is for a formula to
be true in a model we can now investigate whether these two languages are
expressively equivalent.3

In order to show that these two languages are expressively equivalent we
need to be able, given a formula in one language, to construct a formula in the
other such that these formulas are true in the same models. One obvious way
of doing this is to use a translation τ , constructed so that given a formula ϕ in
one language τ(ϕ) is a formula in the other language which is true in the same
models as ϕ. To this end, Wehmeier proposes two translations – rendered here
as τ1 and τ2.4 The translation τ1 maps formulas of LA to subjunctively closed
formulas of LS . One odd feature of τ1 is that it is given in terms of an auxiliary
translation τS , which will do some important work in what is to come.

τ1(pi) = pi τS(pi) = psi .

τ1(ϕ ∧ ψ) = τ1(ϕ) ∧ τ1(ψ) τS(ϕ ∧ ψ) = τS(ϕ) ∧ τS(ψ)

τ1(¬ϕ) = ¬τ1(ϕ) τS(¬ϕ) = ¬τS(ϕ)

τ1(♦ϕ) = ♦τS(ϕ) τS(♦ϕ) = ♦τS(ϕ)

τ1(Aϕ) = τ1(ϕ) τS(Aϕ) = τ1(ϕ)

Given this translation, then, we have the following result.

Lemma 2. For all models M = 〈W,@, V 〉 and all formulas ϕ ∈ LA we have
the following for all points y ∈W .

M |=@ ϕ ⇐⇒ M 
@ τ1(ϕ) andM |=y ϕ ⇐⇒ M 
y τS(ϕ).

3The following two results are stated without proof in (Wehmeier, 2004, p.619).
4These are the obvious recursive definitions of the translations suggested by Wehmeier’s

remarks on p.619 of Wehmeier (2004).
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Proof. By induction on the complexity of ϕ. For the basis case it is easy to
see that for all y ∈ W we have M |=@ pi ⇐⇒ M 
@ pi, and also that
M |=y pi ⇐⇒ M 
y p

s
i .

For convenience we label the two parts of the induction hypothesis, for all
ψ of lower complexity than that of the formula currently under consideration,
for any y ∈W .
Induction Hypothesis-i : M |=@ ψ ⇐⇒ M 
@ τ1(ψ).
Induction Hypothesis-s: M |=y ψ ⇐⇒ M 
y τS(ψ).

Only the inductive cases for ♦ and A need to be considered, the case for the
boolean connectives being routine.

Suppose now that ϕ = ♦ψ.
Part 1: Suppose that M |=@ ♦ψ. Then there is a z ∈ W such that M |=z ψ.
By Induction Hypothesis-s it follows thatM 
z τS(ψ), and so in particular that
M 
@ ♦τS(ψ), which is just τ1(♦ψ) as desired. Suppose now that M 6|=@ ♦ψ.
Then for all z ∈ W we have M 6|=z ψ. So by Induction Hypothesis-s it follows
that M 6
z τS(ψ), and so it follows that M 6
@ ♦τS(ψ) – which is τ1(♦ψ) as
desired.
Part 2: Suppose that M |=y ♦ψ Then there is a z ∈ W such that M |=z ψ.
By Induction Hypothesis-s it follows that M 
z τS(ψ), and hence that M 
y

♦τS(ψ) as desired. Suppose now that M 6|=y ♦ψ. Then for all z ∈ W we have
that M 6|=z ψ. So by Induction Hypothesis-s it follows that M 6
z τS(ψ), and
so it follows that M 6
y ♦τS(ψ) as desired.

Suppose now that ϕ = Aψ.
Part 1: Suppose that M |=@ Aψ. Then it follows that M |=@ ψ. Hence by In-
duction Hypothesis-i it follows that M 
@ τ1(ψ) as desired. Suppose now that
M 6|=@ Aψ. Then it follows thatM 6|=@ ψ, and hence by Induction Hypothesis-i
it follows that M 6
@ τ1(ψ) as desired.
Part 2: Suppose that M |=y Aψ. Then it follows that M |=@ ψ. Hence by
Induction Hypothesis-i we have that M 
@ τ1(ψ), and as this formula is sub-
junctively closed by Lemma 1 it follows that M 
y τ1(ψ), which is τS(Aψ).
Suppose now that M 6|=y Aψ. Then it follows that M 6|=@ ψ, and hence by
Induction Hypothesis-i we have that M 6
@ τ1(ψ). As this formula is subjunc-
tively closed it follows by Lemma 1 that M 6
y τ1(ψ) as desired.

Corollary 1. For all models M = 〈W,@, V 〉 and all ϕ ∈ LA we have the
following.

M |=r ϕ if and only ifM 
r τ1(ϕ).

For the next Lemma we will need the following translation τ2 which maps
formulas of LS to formulas of LA.

5



τ2(pi) = Api

τ2(psi ) = pi

τ2(ϕ ∧ ψ) = τ2(ϕ) ∧ τ2(ψ)

τ2(¬ϕ) = ¬τ2(ϕ)

τ2(♦ϕ) = ♦τ2(ϕ).

Lemma 3. For all models M = 〈W,@, V 〉 and all formulas ϕ ∈ LS we have
the following, for all x ∈W .

M 
x ϕ if and only ifM |=x τ2(ψ).

Proof. By induction upon the complexity of ϕ. For the basis case note that we
have M 
x p

s
i ⇐⇒ M |=x pi, and also M 
x pi ⇐⇒ M |=@ pi ⇐⇒ M |=x

Api.
For our induction hypothesis suppose that for all formulas ψ of complexity

less that ϕ we have that M 
x ψ ⇐⇒ M |=x τ2(ψ).
Suppose, then, that ϕ = ♦ψ, and that M 
x ♦ψ. Then we know that

there is a y ∈ W such that M 
y ψ. By the inductive hypothesis it follows
that M |=y τ2(ψ), and hence that M |=x ♦τ2(ψ) as desired. Suppose now
that M |=x ♦τ2(ψ). It follows then that M |=z τ2(ψ) for some z ∈ W . By
the induction hypothesis it follows that M 
z ψ, and thus that M 
x ♦ψ as
desired.

Corollary 2. For all models M = 〈W,@, V 〉 and all ϕ ∈ LS we have the
following.

M 
r ϕ if and only ifM |=r τ2(ϕ).

Proposition 1 (Wehmeier (2004)). Let truth in a model for formulas in LA

and LS be real world truth. Then LA and LS are expressively equivalent.

Proof. We need to show that, for formulas ϕ ∈ LA, and ψ ∈ LS we have the
following.

∀ϕ∃ψ(∀M :M |=r ϕ ⇐⇒ M 
r ψ). (1)

∀ψ∃ϕ(∀M :M |=r ϕ ⇐⇒ M 
r ψ). (2)

Letting our formula ψ be τ1(ϕ) in (1), and letting our ϕ be τ2(ψ) in (2) the
result follows directly from Corollaries 1 and 2.

It is worth noting that the above expressive equivalence result also holds
when we restrict the formulas ψ ∈ LS to those which are subjunctively closed
– as τ1 translates formulas of LA into formulas of LS which are subjunctively
closed (as noted above), and Corollary 2 holds for all formulas (and so in par-
ticular for all subjunctively closed formulas).
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3 Truth in a Model

One might argue that we should find the expressive equivalence of LA and LS

completely unsurprising, as the only difference between these two languages
is that in LA we have marked indicatives and unmarked subjunctives, and in
LS we have unmarked indicatives and marked subjunctives. Wehmeier’s view
on this issue is made quite clear in the following quotation. Here Wehmeier is
using AML to denote LA and SML to denote LS . We have changed his example,
which involved the translation of the quantifiers, to a propositional one – the
end result is the same.

“It is important to realize, however, that [LS and LA] are not simply no-
tational variants of each other – one might think that the sole difference
consists in that AML marks indicative predicates and has unmarked sub-
junctive predicates, whereas SML has unmarked indicatives and marked
subjunctives. But this is not quite so. For instance, the translation proce-
dure maps the two formulae [p] and [Ap] of AML to the one SML formula
[p]; and so the marked-unmarked dichotomies are not the same in the two
languages.” (Wehmeier, 2004, p.619)

One might object that we could translate these two sentences as ps and p
respectively, but Wehmeier points out in a footnote that a translation scheme
for which τ(p) = ps and τ(Ap) = p would only work “if the subjunctive world
parameter is required to be set to the actual world”(Wehmeier, 2004, p.628,
fn.16).

To make this point clear it will be convenient, adapting a suggestion in
(Hanson, 2006, p.442), to consider a new type of model. A d-model is a structure
〈W,w∗,@, V 〉 exactly like the models we have been considering expanded by the
addition of another possibly, but not necessarily, distinct distinguished world w∗

– the designated point in the model. Truth at a point in a d-model for both LA

and LS works exactly like truth at a point in a model for models of the form
〈W,@, V 〉 – the only place where the new distinguished world will be used is in
determining what it takes for a formula to be true in a model. The addition
of a new distinguished point opens up another useful notion of what it is for
a formula to be true in a model in addition to real-world and general truth
mentioned above. Say that a formula ϕ is true in a d-model 〈W,w∗,@, V 〉
whenever it is true at w∗, that is whenever it is true at the designated point. In
order to talk about this notion of truth in a model in contrast to real-world and
general truth we will say that whenever a formula is true at the designated point
in a model it is d-true in that model.5 As with general and real-world truth we
will denote d-truth with a superscript d, so we will understand M |=d ϕ and
M 
d ψ to mean that ϕ ∈ LA (resp. ψ ∈ LS) is d-true in the d-modelM. Like
general truth, this notion of truth in a model corresponds to general validity,
in that a formula is generally true in a model 〈W,@, V 〉 when it is d-true in all
d-models based on that model (i.e., all d-models 〈W,w∗,@, V 〉 with w∗ ∈ W ).
Thus general validity, construed as general truth in all d-models, coincides with

5Where ‘model’ here should be read as d-model.
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general validity as defined above in terms of models simpliciter (as observed
in (Hanson, 2006, p.443)). Henceforth we will talk in terms of d-models, but
continue to refer to truth at the designated point as d-truth.

Let us now move to thinking in terms of d-models, and identify, for the
moment, the default subjunctive world parameter with the designated point
w∗ – thinking of truth in a model for formulas in LS as d-truth, and truth in
a model for formulas in LA as real-world truth as before. Then Wehmeier’s
point, is that in order for a translation τ for which τ(p) = ps and τ(Ap) = p
to show that LA and LS are expressively equivalent we would be required to
make the default designated world (our default subjunctive world parameter)
be the actual world – otherwise we could have M |=@ p (and hence M |=r p),
and M 6
w∗ τ(p) (and hence M 6
d τ(p)), as we can just have V (p) = {@} and
w∗ 6= @. Thus we see a failure of the reformulated version of (1) for ϕ = p and
ψ = τ(p), and so Wehmeier concludes that we cannot use such a translation to
show that LA and LS are expressively equivalent.

This is true, as far as it goes, but this only occurs because we are thinking
of truth in a model for formulas of LA in terms of real-world truth.6 That is
to say, the reason why Wehmeier claims that a translation scheme which works
like τ above will only work if we require that the default subjunctive world
parameter to be the actual world is that Wehmeier is assuming that truth in
a model for LA is truth at the actual world. However, if we have no good
reason for thinking that the default subjunctive parameter should be the actual
world when evaluating formulas in LS , we equally well have no good reason for
thinking that the default world of evaluation for formulas of LA (i.e. our default
subjunctive world) should be the actual world. As Wehmeier notes:

“while it may so happen that the actual world becomes the salient possible
world, it would be counterintuitive to require that, in the absence of an
otherwise specified world, the actual world serves by default as the salient
possible world.”(Wehmeier, 2004, p.628, fn.16).

Thus if this argument is good enough for us to conclude that the default
world of evaluation for formulas of LS should not be the actual world, then
it is equally good enough for us to conclude the same about formulas of LA.7

6A related phenomenon occurs when we consider whether the actuality operator is elim-
inable in propositional modal logic, as is argued in Hazen (1978). Hazen is there concerned
with pointing out the contrast between propositional and predicate modal logics with the
actuality operator, arguing that the actuality operator is eliminable in the propositional case,
but not in the predicate case. The proof of the eliminability of the actuality operator given
by Hazen relies upon us thinking of validity as real-world validity in order for the formula
Ap ↔ p to be a theorem – and thus, truth in a model for formulas in LA as real-world truth.
If we take the eliminability of A from LA to imply the expressive equivalence between LA and
the A-free modal language LM , then the same concerns as above show that this will only go
through if we think of truth in a model for formulas in LM as real-world truth. If we instead
think of truth in a model for formulas in LM as d-truth then we can show that these two
languages are not expressively equivalent – let W = {@, w}, and let V = {〈p,@〉} then the
models 〈W,w,@, V 〉 and 〈W,@,@, V 〉 have the same LA-formulas (real-world) true in them,
but different formulas in LM d-true in them.

7Hanson suggest a similar line of argument on p.443 of Hanson (2006). It is worth noting
that the ambiguities in logical form which LA predicts (discussed at the end of section 4 of
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If we think of truth in a model for formulas of the actually language as truth
at the designated point in that model then it looks like Wehmeier’s comments
regarding the marked-unmarked dichotomies in the two languages no longer
apply – as we no longer have distinct formulas of LA being mapped to the same
formula in LS . Moreover the two languages are expressively equivalent in this
sense.

Proposition 2. Let truth in a d-model for formulas of LA and LS be d-truth.
Then LA and LS are expressively equivalent.

Proof. We need to show that, for formulas ϕ ∈ LA, and ψ ∈ LS we have the
following.

∀ϕ∃ψ(∀M :M |=d ϕ ⇐⇒ M 
d ψ). (3)

∀ψ∃ϕ(∀M :M |=d ϕ ⇐⇒ M 
d ψ). (4)

Letting our formula ψ be τS(ϕ) in (3), and letting our ϕ be τ2(ψ) in (4) the
result follows directly from Lemma 2 and Lemma 3.

Recall now that LSS does nothing more than invert the marked/ unmarked
dichotomies of LA – this being one of the stated reasons for investigating it
given in Humberstone (1982). Moreover, therein it is shown that LA and LSS

are expressively equivalent, and those expressive equivalence results, much like
the results we give above, show that the two languages are expressively equiva-
lent when truth in a model is thought of as d-truth. Given, then, that expressive
equivalence is a transitive relation between languages, it follows that LS and
LSS are also expressively equivalent. But from this it seems to follow that,
Wehmeier’s own protestations to the contrary notwithstanding, the only differ-
ence between LA and LS is over which mood is marked and which is unmarked
– making them notational variants in the manner alluded to by Wehmeier. That
is, the only difference between the two languages becomes whether we are mark-
ing the indicative or subjunctive moods, and the devices which are using to do
so.

4 Subjunctively Closed Formulas

One possible objection one might make at this point is that, while the trans-
lation τ1 yields subjunctively closed formulas, its auxiliary translation τS does
not. Consequently, when we use τS to show that LA and LS are expressively
equivalent we are doing so in terms of formulas which are not subjunctively
closed. For example, the τS-translation of the formula p, will be ps, in which
we have a subjunctive variable not in the scope of a modal operator. As formu-
las which are not subjunctively closed are second class citizens in Wehmeier’s

Wehmeier (2004)) only occur when we think of truth in a model as real-world truth – otherwise
they are no different from the cases where (in LS) we can have p and ps have the same truth
value when our subjunctive world parameter becomes the actual world.
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subjunctive modal language, in the same way that open formulas are second
class citizens in predicate logic, one might object that this translation does not
show that the two languages are properly expressively equivalent, as it does
not preserve the implicit restriction that the formula ψ in (3) above should be
subjunctively closed.

As it turns out, though, this requirement is in tension with taking truth in
a model for formulas of LA as truth at the designated world. That is, if we are
to take truth in a model for formulas of LA as d-truth, it turns out that there
can be no translation τ which will map formulas of LA to subjunctively closed
formulas in LS such that for all formulas ϕ ∈ LA we have ϕ and τ(ϕ) true in
the same models – from which it follows that LA and the subjunctively closed
fragment of LS – henceforth L∗S – are not expressively equivalent. To show this
consider the following two d-models.

• W := {x, y}.

• V (p) := {x}.

• M = 〈W,x, x, V 〉.

• M′ = 〈W, y, x, V 〉.

By Lemma 1 it follows that the same subjunctively closed formulas are true
throughout both M and M′. As a result we have that for all subjunctively
closed formulas ψ that M 
r ψ ⇐⇒ M′ 
r ψ, and also that M 
d ψ ⇐⇒
M′ 
d ψ. It is also easy to see that M |=x p (and hence M |=d p) while
M′ |=y ¬p (and henceM |=d ¬p). This means that there can be no translation
τ such that p and τ(p) are d-true in the same models, which gives us the following
result.

Theorem 2. Let truth in a d-model for formulas of LA be d-truth, and truth in
a d-model for formulas of LS be either d-truth or real-world truth. Then LA and
the subjunctively closed fragment of LS (L∗S) are not expressively equivalent.

Proof. We will focus on the case where truth in a model for formulas in the
subjunctively closed fragment of LS is d-truth. Recall that, in particular, in
order for LA and L∗S to be expressively equivalent we would need to have the
following.

∀ϕ ∈ LA∃ψ ∈ L∗S(∀M :M |=d ϕ ⇐⇒ M 
d ψ).

One instance of this will be where ϕ = p, which would require that there be
some formula ψp ∈ L∗S such that for all models M, we have that M |=d p ⇐⇒
M 
d ψp. But the models M and M′ above agree on all subjunctively closed
formulas (i.e. all formulas in L∗S), but disagree over whether p ∈ LA is true in
them. So there can be no such formula ψp, and hence the two languages cannot
be expressively equivalent.

This suggests that, if we are being charitable concerning our notion of truth
in a model, that the differences regarding the marked-unmarked dichotomies in
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the two languages, are there simply by fiat – put there by placing the focus
(justifiable or not) on subjunctively closed formulas in LS . If we are to think
of truth in a model for formulas in the actuality language as d-truth then the
proponents of the subjunctive language must make one of a number of choices.
On the one hand they could just bite the bullet concerning Theorem 2, and admit
that what they care about is the subjunctively closed fragment of LS , living
with the fact that their language is (formally speaking at least) expressively
weaker than the actuality language. The task here would be, of course, to try
and explain away this apparent expressive inadequacy in some way. On the
other hand they could take the moral from Theorem 2 to heart, and admit that
what they care about more is the expressive equivalence between their language
and the actuality language, thus placing less emphasis on subjunctively closed
formulas – possibly banishing them to the realm of the pragmatics of modal
language.8

There is of course one final option for the proponent of the subjunctive
language. Our discussion has largely assumed the desirability of the proponent
of the actuality language thinking of truth in a model in terms of d-truth in a
d-model (and derivatively, validity as general validity). That we should do so is
defended by Hanson, but the proponent of the subjunctive language could deny
this – claiming that the only sensible or appropriate notion of truth in a model
and validity for formulas in the actuality language is real-world truth/validity.
Given how much rides on such choices for validity and truth in a model for the
actuality language such issues deserve a more thorough investigation.
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