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Abstract

Our concern here is with the extent to which the expressive equiva-
lence of Wehmeier’s Subjunctive Modal Language (SML) and the Actual-
ity Modal Language (AML) is sensitive to the choice of background modal
logic. In particular we will show that, when we are enriching quantified
modal logics weaker than S5, AML is strictly expressively stronger than
SML, this result following from general considerations regarding the re-
lationship between operators and predicate markers. This would seem to
complicate arguments given in favour of SML which rely upon its being
expressively equivalent to AML.

1 Introduction

The expressive inadequacies of the standard modal language are well known,
caused in part by a lack of any device for forcing the rigid evaluation of for-
mulas at the actual world. The typical way of overcoming these expressive
inadequacies, the AML approach, has been to enrich the language of modal
logic with an actuality operator ‘A’, which forces formulas within its scope to
be evaluated at the actual world. This is not the only way of enriching the
expressive capacities of the standard modal language, an alternative way of do-
ing so having been argued for by Kai Wehmeier in a series of papers beginning
with [18]. This alternate approach, which following Wehmeier we will call the
SML approach,1 enriches the expressive power of our modal language with a
class of marked predicates, with the unmarked predicates evaluated rigidly at
the actual world, and the marked predicates evaluated at the world of evalu-
ation. Despite the initial thought one might have that, due to the additional

∗This is a preprint. The final paper will be published in Studia Logica [here]. Readers
should be aware that a number of notational changes happened between this version and the
final version!

1On p.615 of [18] SML is taken to be an abbreviation for ‘Subjunctive Modal Logic’ (and
similarly for AML). Throughout we will take this to be an abbreviation for the Subjunctive
Modal Language, so as to be able to talk about variation in the background assumptions
concerning the modal operators (i.e. variation in the background modal logic).
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freedom of occurrence which an operator enjoys, the AML language might be
expressively stronger than the SML one, Wehmeier shows therein that, in a
very precise sense, these two languages are expressively equivalent when our
background modal logic is S5.

Given this we are faced with a methodological question of how to choose be-
tween these two competing frameworks. There appear to be two main issues at
stake in the dispute between AML and SML theorists—the significance of sub-
junctive closure, and the distinction between operators and predicate markers.
Intuitively speaking, a formula is subjunctively closed iff every occurrence of a
predicate in that formula is either within the scope of a modal operator, or is an
‘indicative formula’—e.g. a formula either under the scope of an actuality oper-
ator in the AML case, or an unmarked predicate in the SML case. Arguments
in favour of taking only subjunctively closed formulas as meaningful (analogous
to similar arguments in favour of treating only closed sentences as meaningful)
are given on p.616 of [18]. On this front, Wehmeier has argued that we should
prefer SML over AML, as the actuality language creates spurious distinctions
in the logical form of standard subject-predicate sentences—rendering sentences
like “John is clever” ambiguously as either Cj or ACj. On the face of it this
seems to be a rather telling indictment of the AML approach, but of course this
issue can be resolved by the AML theorist by placing greater emphasis on the
subjunctively closed fragment of their language, regarding formulas like Cj as
having the same status as open formulas in predicate logic (cf. [4]). We will
largely be unconcerned with this issue here, though.

Our main concern in this paper will be with the second of the two issues
raised above: whether we should prefer interpreted languages with predicate
markers over expressively equivalent ones with operators. After having just
compared the AML and SML approaches to dealing with the expressive in-
adequacies of quantified modal logic, Lloyd Humberstone makes the following
remark on this issue (crediting the sentiment expressed to Timothy Smiley).

As a general rule, it is not a good idea to argue against a more comprehen-
sive language—such as one in which ... [‘A’] can operate on an arbitrary
formula and not just (in effect) on an atomic formula—and [for] a less
comprehensive one, on the basis of an observation that everything that
can be said in the richer language has an equivalent in the poorer, since
if we work only with the poorer language, we can no longer formulate the
observation in question. [10, p.46f]

In what follows we will make explicit the objection being made above for
why one should not prefer such a less comprehensive language over a more
comprehensive one. What we will show is that the aforementioned inability
to express what is under dispute puts the predicate marker language at the
mercies of the behaviour of parts of the language which are not under dispute.
In particular we will focus on the case where we weaken the background modal
logic, or enrich the object language in various ways. What we will argue here
is that the expressive equivalence of the SML and AML frameworks is only
an artefact of comparing the two different linguistic frameworks in a particular
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logical setting—namely first-order S5 with the standard modal operators �
and ♦. The majority of work on actuality and subjunctivity has focused on this
case,2 but it turns out that variations on this logical setting make a striking
difference to the equivalence of the AML and SML approaches. Moreover, when
we change the framework it becomes unclear what precisely we are to take the
SML approach to be against weaker background modal logics.

2 Preliminaries

Intuitively speaking, two languages L1 and L2 are expressively equivalent when-
ever they are able to discriminate between the same models. We will find it
convenient to cash that out, here, in the following strong sense.

Definition 2.1. Two languages L1 and L2 are expressively equivalent iff we
have the following:

∀ϕ ∈ L1 ∃ψ ∈ L2(∀M :M |=L1
ϕ ⇐⇒ M |=L2

ψ).

∀ψ ∈ L2 ∃ϕ ∈ L1(∀M :M |=L1
ϕ ⇐⇒ M |=L2

ψ).

Where M |=Li
ϕ means that ϕ is true in the model M in the Li-sense.

It is easy to see that this is the notion of expressive equivalence which is
under discussion in [18, p.619] when it is noted that “from a purely logical point
of view, ... [AML and SML] are expressively equivalent”, the above definition
having been used in the preceding paragraphs to show this.

Here our interest is in comparing the expressive power of SML and AML
as different linguistic frameworks for correcting the expressive inadequacy of
standard quantified modal logic. As a result we want to be able to separate
issues concerning how the indicative mood is treated from issues concerning
the logical behaviour of the modal operators. Consequently, we will draw a
distinction between linguistic frameworks and interpreted languages as used in
the above definition, with linguistic frameworks leaving some element of the
interpretation of parts of the language under-defined. In our particular case
what both SML and AML leave undefined is the logic of the modal operators—
the background modal logic to which the actuality operator or indicative and
subjunctive predicates are being added to. As a result all of our comparisons will
be between SML and AML relative to some filling in of the background modal
logic S. Formally speaking say that L1 is expressively equivalent to L2 over S
whenever L1 is expressively equivalent to L2 whenever we restrict the class of
models to those which satisfy S. This kind of relativity to a background modal
logic is easily masked when the background modal logic is taken to be S5, as in

2Notable exceptions to this are [7], [15] (which discusses indexed actuality operators in log-
ics weaker than S5) and [8] (which discusses propositional logics with the actuality operator).
[20] is a further exception here, considering how the predicate marker and operator approaches
are able to deal with cross-world predication, and finding in favour of the predicate marker
approach. In deciding between AML and SML we will need to assess how the two frameworks
can deal with cross-world predication, but this is something we will leave aside here.
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this case rather than restrict ourselves to models with reflexive, transitive, and
symmetric accessibility relations, we can instead change the truth-in-a-model
clause for ♦-formulas in both languages so that ♦ϕ is true at a world w just in
case ϕ is true at some world w′ in the model. Once this kind of modification is
made, we end up with a straightforward comparison of expressive power between
two different interpreted languages.

Another subtlety which we have to be aware of when considering comparisons
of expressive power in a modal setting is what we take truth in a model to
consist in for our languages Li. Here we will, following [18, p.619], take truth
in a model for languages in the AML framework to be truth at the actual world
in the model. The core result of §5, that SML is expressively weaker than AML
when our background modal logic is weaker than S5, follows not only if we take
truth in a model for languages in the SML framework to be truth at some world
in a model (as suggested in [18, p.618], but also if we let truth in a model be
truth at the actual world.

In moving from S5 to weaker logics like S4 we also have to take care over how
we are altering our models to allow for the evaluation of the actuality operator
and indicative predicates. That is, in the terminology of [8], we have to take
care regarding what we take the actuality extension of a given logic to be. This
is important because many of the requirements one might impose upon how we
are to extend our models to allow for the actuality operator are equivalent in
S5, but not in weaker logics.

For example in [16] we are presented with a number of different conditions
which we can place upon which worlds are accessible to and accessible from the
actual world @ in a model. For example we could place either of the following
two constraints upon our models.

For every world w, R@w. (1)

For every world w, Rw@. (2)

In the case where our background modal logic extends KB conditions (1)
and (2) are equivalent, but are distinct in logics such as S4 which do not extend
KB. The reason we mention this is just to point out the extra degrees of freedom
which arise when we are considering how to enrich logics like S4 by the addition
of the actuality operator. In [8] a general recipe is given for going from a given
modal logic S characterised by a class of frames C to the class of frames CA which
determines its actuality extension SA(C) w.r.t the class of frames C. How this
works is most easily described in the propositional case, but it will be obvious
how this can be extended to frames for first-order modal logics. Given a class
of frames C define CA to be {〈W,w,R〉|〈W,R〉 ∈ C, w ∈W}. That is to say, the
actuality extension of a class of frames results from selecting each point in each
frame in turn as the distinguished point. Of course, in the first-order case we are
not guaranteed that when a logic S is characterised by multiple different classes
of frames that their actuality extensions will coincide. In this case, where S is
a logic determined by at least one class of frames, let us say that the actuality
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extension of a logic S is the logic determined by the actuality extension of the
class of all frames for S. We bring this up mostly to make clear that the frames
which we will be discussing below in §5, which satisfy condition (1) above, are
amongst the actuality extension of first-order S4.

3 Introducing AML and SML

Letting P be a set of predicate symbols, the language of L has as primitive sym-
bols the elements of P, the equality symbol =, the boolean connectives {¬,∧},
denumerably many individual variables x, y, x1, x2, . . ., and the existential quan-
tifier ∃. The language QLA additionally has the modal operators ♦ and and A,
as well as an ‘actuality quantifier’ ∃@. The language QLS has the modal opera-
tor ♦, an ‘actuality quantifier’ ∃@ and, for each predicate P ∈ P the subjunctive
predicate P s. Here QLA represents the formal language of the AML framework,
and QLS that of the SML framework. The language we are calling QLS here
is a notational variant of Wehmeier’s, who, rather than having an explicitly
marked actuality quantifier (or indicative quantifier in Wehmeier’s terms) and
an unmarked subjunctive quantifier, instead has an explicitly marked subjunc-
tive quantifier ∃s and treats the unmarked quantifier indicatively. We use this
language in order to ease the cognitive load on the reader.3

The formulas of QLS and QLA are defined inductively as follows.

QLS formulas

• If P is an n-ary predicate from P and x1, . . . , xn are individual variables
then Px1 . . . xn is a QLS formula.

• If P is an n-ary predicate from P and x1, . . . , xn are individual variables
then P sx1 . . . xn is a QLS formula.

• If x and y are individual variables then x = y is a QLS formula.

• ϕ and ψ are formulas of QLS , then so are ¬ϕ and ϕ ∧ ψ.

• If ϕ is a formula and x an individual variable, then ∃xϕ and ∃@xϕ are
QLS formulas.

• If ϕ is a QLS formula then so is ♦ϕ.

3Wehmeier’s reasons for making this particular notational choice are clearly articulated in
[19, p.199] where he says the following: “An obvious constraint on any language of modal
predicate logic is that its non-modal part should simply be the language of ordinary predicate
logic. Therefore, indicative predicates are to be expressed by the ordinary predicate symbols
of non-modal predicate logic (which, after all, formalises ordinary, indicative discourse), and
it is the subjunctive for which we need to introduce a new notation.” That this is an obvious
constraint is not clear to this author.
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QLA formulas

• If P is an n-ary predicate from P and x1, . . . , xn are individual variables
then Px1 . . . xn is a QLA formula.

• If x and y are individual variables then x = y is a QLA formula.

• ϕ and ψ are formulas of QLA, then so are ¬ϕ and ϕ ∧ ψ.

• If ϕ is a formula and x an individual variable, then ∃xϕ and ∃@xϕ are
QLA formulas.

• If ϕ is a QLA formula then so is ♦ϕ and Aϕ.

A sentence of a given language is a closed formula from that language, where
closed formulas are understood standardly as formulas in which every individual
variable occurring in the formula is bound by a quantifier. A formula in QLS is
subjunctively closed if every occurrence of a subjunctive predicate symbol and
subjunctive quantifier ‘∃’ is in the scope of a modal operator.

Our semantic structures will be expansions of Kripke frames for quantified
S4 where we select a distinguished world @ ∈ W . More precisely, a model
will be a tuple M = 〈W,@, R, (Dw)w∈W , (Pw)P∈Pw∈W 〉, where R is a reflexive,
transitive relation on W , (Dw)w∈W is a W -indexed family of sets at least one of
which is non-empty (the union of which is denoted by D) and a doubly indexed
family (Pw)P∈Pw∈W of relations, where for each n-ary P ∈ P and arbitrary w ∈W ,
Pw is a subset of Dn.4 A frame will, as is standard, be taken to be a structure
F = 〈W,@, R, (Dw)w∈W 〉.

A variable assignment σ is a mapping from the set of individual variables
into D, and σ{x := o} is the function which is like σ except that it maps the
variable x to the object o.

Truth of a formula ϕ at a point w in a model M on a variable assignment
σ for formulas in QLA (“M, σ |=w ϕ”) will be defined inductively as follows.

M, σ |=w Px1 . . . xn ⇐⇒ 〈σ(x1), . . . , σ(xn)〉 ∈ Pw.

M, σ |=w xi = xj ⇐⇒ σ(xi) = σ(xj).

M, σ |=w ϕ ∧ ψ ⇐⇒ M, σ |=w ϕ and M, σ |=w ψ.

M, σ |=w ¬ϕ ⇐⇒ M, σ 6|=w ϕ.

M, σ |=w ♦ϕ ⇐⇒ for some v ∈W : Rwv and M, σ |=v ϕ.

M, σ |=w Aϕ ⇐⇒ M, σ |=@ ϕ.

M, σ |=w ∃xϕ ⇐⇒ for some o ∈ Dw :M, σ{x := o} |=w ϕ.

M, σ |=w ∃@xϕ ⇐⇒ for some o ∈ D@ :M, σ{x := o} |=w ϕ.

In altering SML from the setting where the background modal logic is S5
in order to accommodate changes in the background modal logic we are faced

4Note that officially we place no restrictions on the sets Dw, although as it happens
throughout our models are such that if Rwv then Dw ⊆ Dv , and this fact will be used
essentially in our result.
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with a choice in how we are to evaluate formulas of the form ♦ϕ, as there are
two different clauses which are compatible with the behaviour of ♦ in the SML
framework when our background modal logic is S5. Either we can say that (i)
♦ϕ is true at a world w iff there is a world accessible from w at which ϕ is true,
or (ii) that ♦ϕ is true at a world w iff there is a world accessible from @ at
which ϕ is true. This creates a dilemma for the SML theorist: they must either
treat their modal operators ‘indicatively’ (and so follow option (ii)) above, or
treat them ‘subjunctively’ (and follow option (i)) above. Here we will take the
obvious way of lifting the language to be the standard one (corresponding to
option (i) above), and thus begin in the following section by discussing how this
option fares, examining the indicative treatment in §8.5

As a result of this dilemma we will need to define two different notions
of truth in a model for formulas from QLS , corresponding to two different
interpreted languages, which differ over their evaluation of ♦-formulas:  for
the subjunctive interpretation, and i for the indicative interpretation (which
we will define in §8). Which of these two definitions of truth in a model the
SML theorist should favour is not clear, as we will see both of them run into
various difficulties. Our dialectical purpose here is to discuss the relative costs
of these two different ways the SML theorist has of handling weaker background
modal logics.

Truth of a formula ϕ at a point w in a model M relative to a variable
assignment σ for formulas in QLS (“M, σ w ϕ”) will be defined inductively as
follows.

M, σ w Px1 . . . xn ⇐⇒ 〈σ(x1), . . . , σ(xn)〉 ∈ P@.

M, σ w P sx1 . . . xn ⇐⇒ 〈σ(x1), . . . , σ(xn)〉 ∈ Pw.

M, σ w xi = xj ⇐⇒ σ(xi) = σ(xj).

M, σ w ϕ ∧ ψ ⇐⇒ M, σ w ϕ and M, σ w ψ.

M, σ w ¬ϕ ⇐⇒ M, σ 6w ϕ.

M, σ w ♦ϕ ⇐⇒ for some v ∈W : Rwv and M, σ v ϕ.

M, σ w ∃xϕ ⇐⇒ for some o ∈ Dw :M, σ{x := o} w ϕ.

M, σ w ∃@xϕ ⇐⇒ for some o ∈ D@ :M, σ{x := o} w ϕ.

4 Subjunctive-SML Morphisms

We will begin by considering how the subjunctive interpretation of SML (hence-
forth SML-s) fares. In order to address the question of whether SML-s and
AML are expressively equivalent over weaker background logics we will first
need to establish some preliminary results concerning morphisms between pred-
icate Kripke frames which preserve SML-formulas. We will henceforth, for the
sake of simplicity, restrict ourselves to frames with cumulative domains—frames

5It is worth noting that Wehmeier (p.c.) does not share this intuition regarding the plau-
sibility concerning how to treat the modal operators in weaker settings.
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where if Ruv then Du ⊆ Dv. The following definition is an adaption of that
given in [6, p.219f].

Definition 4.1. Suppose that F = 〈W,R,@, (Dw)w∈W 〉 and F ′ =
〈W ′, R′,@′, (D′w)w∈W ′〉 are predicate Kripke frames. Then an SML-frame-
morphism from M to M′ is a pair f = 〈f, g〉 s.t.

1. f is a surjection such that f(@) = @′.

2. ∀u, v ∈W if Ruv then R′f(u)f(v).

3. ∀u ∈W ∀v′ ∈W ′ if R′f(u)v′ then ∃v(Ruv & f(v) = v′).

4. g is a W indexed set of functions gu for u ∈W .

5. For all u ∈ W ,gu : (Du ∪ D@) → (D′f(u) ∪ D
′
f(@)) are bijections s.t.

gu(Du) = D′f(u) and gu(D@) = D′f(@).

6. For all u, v ∈W if Ruv then for all a ∈ Du gu(a) = gv(a).

The first three conditions here suffice to make f a p-morphism between the
underlying propositional frames of M and M′ (with the added condition that
@ is mapped to @′). The final three conditions are the more interesting ones,
here. These conditions are required in order to ensure that frames which are
related by a SML-morphism validate the same quantificational formulas.

Definition 4.2. An SML-model-morphism is a SML-frame-morphism f = 〈f, g〉
from predicate Kripke models M= 〈W,R,@, (Dw)w∈W , (Pw)P∈Pw∈W 〉 and M′ =

〈W ′, R′,@′, (D′w)w∈W ′ , (P ′w)P∈Pw∈W ′〉, an SML-model-morphism from M to M′
which also satisfies the following condition for all n-ary predicates F ∈ P and
all w ∈W :

〈a1, . . . , an〉 ∈ Fw ⇐⇒ 〈gw(a1), . . . , gw(an)〉 ∈ F ′f(w)

Definition 4.3. Given a predicate Kripke frame M = 〈W,R,@, D〉, say that
a variable assignment σ is a u-assignment for ϕ iff for all variables xi which
appear free in ϕ we have that σ(xi) ∈ (Du ∪D@).

Theorem 4.4. If f is a SML-model-morphism from the predicate Kripke model
M = 〈W,R,@, (Dw)w∈W , (Pw)P∈Pw∈W 〉 to the predicate Kripke model M′ =

〈W ′, R′,@′, (D′w)w∈W ′ , (P ′w)P∈Pw∈W ′〉 then, for all u ∈ W and all σ which are
u-assignments for ϕ:

M u ϕ[σ] if and only if M′ f(u) ϕ[gu(σ)].

Proof. By induction on the complexity of ϕ.

Basis Case: There are three cases in the basis case: that where ϕ is Fx1 . . . xn,
where ϕ is F sx1 . . . xn, and that where ϕ is x = y. The cases where ϕ is
an indicative or subjunctive predication are exactly similar and follow from
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f being a morphism between the models. That is, M u Fx1 . . . xn[σ] iff
〈σ(x1), . . . σ(xn)〉 ∈ F@ iff 〈g@(σ(x1)), . . . , g@(σ(xn))〉 ∈ F ′f(@) iff M′ f(u)

Fx1 . . . xn[g@(σ)] iff (as g@ and gu agree on D@) M′ f(u) Fx1 . . . xn[gu(σ)].
For the case where ϕ is x = y suppose that M u x = y[σ]. This is the case iff
σ(x) = σ(y), which as gu is a bijection from Du ∪D@ to D′f(u) ∪D

′
f(@) will be

the case iff gu(σ(x)) = gu(σ(y)) iff M′ f(u) x = y[gu(σ)].

Inductive Step: The interesting cases in the inductive step are those where
for some formula ψ, ϕ is either ∃xψ, or ∃@xψ, or ♦ψ. We treat each case in
turn.

∃xψ Case: Suppose thatM u ∃xψ[σ]. This is the case iff there is an a ∈ Du

and a σ′ s.t. σ′ ∼x σ and σ′(x) = a andM u ψ[σ′]. As σ′ is a u-assignment for
ψ it follows by the induction hypothesis that M′ f(u) ψ[gu(σ′)]. By condition
(5) of Definition 4.1 gu is a bijection from Du to D′f(u), thus as a (= gu(σ′)(x))

is in Du it follows that gu(σ′) is an x-variant of gu(σ) s.t. gu(σ′)(x) ∈ D′f(u).
Consequently, M′ f(u) ∃xψ[gu(σ)] as desired.

∃@xψ Case: Suppose that M u ∃@xψ[σ]. This is the case iff there is an
a ∈ D@ and a σ′ s.t. σ′ ∼x σ and σ′(x) = a and M u ψ[σ′]. As σ′ is a u-
assignment for ψ it follows by the induction hypothesis thatM′ f(u) ψ[gu(σ′)].
By condition (5) of Definition 4.1 gu is a bijection from D@ to D′f(@), thus as

a (= gu(σ′)(x)) is in D@ it follows that gu(σ′) is an x-variant of gu(σ) s.t.
gu(σ′)(x) ∈ D′f(@). Consequently, M′ f(u) ∃@xψ[gu(σ)] as desired.

♦ψ Case: Follows from the fact that f is a p-morphism.

5 Two Equivalent SML-models

We will now use the material from the pervious section to show that SML-s and
AML are not expressive equivalent over weaker background logics. Consider
the following two models, where W = {@, w0, w1} and R is the least reflexive,
transitive relation on W such that R@w0 and R@w1.

• M = 〈W,R,@, DM , FM 〉
DM = {〈@, {o}〉, 〈w0, {a, o}〉, 〈w1, {b, o}〉}.
FM = {〈@, ∅〉, 〈w0, {a}〉, 〈w1, {b}〉}.

• N = 〈W,R,@, DN , FN 〉
DN = {〈@, {o}〉, 〈w0, {a, o}〉, 〈w1, {a, o}〉}.
FN = {〈@, ∅〉, 〈w0, {a}〉, 〈w1, {a}〉}.
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@

w0 w1

{o}

{a, o} {b, o}
M

@

w0 w1

{o}

{a, o} {a, o}
N

Figure 1: The Models M and N , the open circles indicating reflexive points.

It is easy to see that the following QLA-sentence is true at @ in M, and
false at @ in N .

(?) ♦[∃x(Fx ∧ A♦(∃y(Fy ∧ x 6= y)))].

Kai Wehmeier has pointed out to the author in conversation that this formula
bears more structurally similarity to Kamp-style tense logical sentences like “A
child was born who will become ruler of the world”, traditionally used to show
the expressive inadequacy of quantified tense logic without the ‘Now’ operator
[11, p.231], than to the examples of the form “It is possible that every red thing
should be shiny” considered in e.g. [9], and [18]. To see this write the past and
future tense operators as ♦− and ♦+ respectively (rather than the Priorian P
and F) and consider the Kamp-sentence’s logical form:

♦−[∃x(Born(x) ∧ N♦+(Ruler-of-the-world(x)))].

This suggests that there are two different kinds of expressive weakness which
get conflated when our background modal logic is S5. On the one hand we have
expressivity issues which concern rigid predicate evaluation. These are usually
motivated by wanting to treat natural language sentences like “It is possible
that every red thing should be shiny”, where we need a device like the actu-
ality operator or predicate-markers in order to evaluate certain predicates (in
this case ‘red’) at the actual world—taking them outside the semantic scope of
modal operators governing them. On the other hand we have expressivity issues
which concern resetting the world of evaluation. This is the kind of expressive
weakness brought out by the Kamp-sentence above, where we need to evaluate
a certain formula from the present time—taking an arbitrary, as opposed to
merely atomic, formula outside the semantic scope of the modal/temporal op-
erators governing it. For example, in the Kamp-sentence (reverting to Priorian
notation) we need to take ‘F(Ruler-of-the-world(x))’ outside the semantic scope
of the P. It is worth noting that in all the apparent ways of treating this kind of
expressive weakness also allow for rigid predicate evaluation as a special case.
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Focusing on background logical frameworks like S5 where, in a certain sense,
all worlds are equal, the second kind of potential expressive weakness has gone
largely unnoticed in the modal case. In the tense logical case the difference
between the two kinds of expressive weakness would appear to have gone unno-
ticed for a different reason. As the Kamp-sentence above shows the immediate
need in tense logic is to be able to be able to reset the evaluation of a formula
back to the present time. Thus, in the tense logical case, we end up having to
treat this other kind of expressive weakness, of which rigid predicate evaluation
is a special case.

Now, consider the following W -indexed set of functions (gu)u∈W .

• g@ is the identity map.

• gw0
is the identity map.

• gw1
(o) = o; gw1

(b) = a

It is easy to see the following.

Lemma 5.1. The pair 〈id, g〉 is an SML-model-morphism fromM to N , where
id is the identity function.

Proposition 5.2. The models M and N verify the same SML formulas.

Proof. Follows from the above Lemma and Theorem 4.4.

Corollary 5.3. For all sentences ϕ ∈ QLS we have that:

M @ ϕ if and only if N @ ϕ.

What this result show is that there is no sentence (i.e. closed formula)
which discriminates between the modelsM and N , no matter whether truth in
a model is truth at some world in the model, truth at all worlds in the model,
or truth at the actual world in the model (these all just being various special
cases of Proposition 5.2, just like Corollary 5.3 above).

There are two important points which should be made here concerning the
SML-s framework in weaker background modal logics. The first is that in such a
setting formulas which are subjunctively closed are no longer true at all worlds
in a model if they are true at at least one world. This means that the notion
of truth in a model for the SML language is no longer so clearly motivated
by the requirement that the only ‘first class’ logical citizens are subjunctively
closed sentences, as is claimed in [18, p.618].6 This is a further illustration of

6It is worth noting, though, that when we are construing the modal operators in the SML-i
sense discussed in §8 that subjunctively closed formulas are true throughout a model whenever
they are true at a point in the model. In a language with mixed indicative and subjunctive
modal operators the SML theorist would have to further amend the definition of subjunctive
closure to require that subjunctive modal operators only occur within the scope of indicative
ones in order to keep the modal invariance of subjunctively closed formulas. At this point the
present author feels we are starting to drift further away from the intuitive motivation for the
notion given in [18].
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the phenomenon which we discussed in §2 in which notions which are equivalent
in S5 come apart in weaker modal logics—as we now can draw a distinction
between three different notions of truth in a model for the SML language: truth
at a world, truth throughout the model, truth at the actual world. The above
results are invariant as regards the background notion of truth in a model.7

On the basis of this we have the following core result.

Theorem 5.4. QLA and the SML-s version of QLS are not expressively equiv-
alent over S4.

Proof. The result follows from Corollary 5.3 and the fact that (?) is true in M
but not in N .

That this indicates a particular expressive deficit on the part of QLS can be
seen in light of the following result.

Theorem 5.5. QLA is at least as expressive as the SML-s version of QLS over
all modal logics S.

Proof. To see this consider the following translation τ , which is homonymous
on the boolean connectives.

τ(Fx1 . . . xn) = AFx1 . . . xn; τ(F sx1 . . . xn) = Fx1 . . . xn;

τ(∃xϕ) = ∃xτ(ϕ); τ(∃@xϕ) = ∃@xτ(ϕ)

It follows by an easy induction on the complexity of ϕ ∈ QLS that for all models
M, worlds w and assignments σ that

M w ϕ[σ] if and only if M |=w τ(ϕ)[σ],

which is all that is required to show that QLA is at least as expressive as
QLS .

Thus, QLA is strictly more expressive that the SML-s version of QLS over
S4. Our reason for singling out S4 in the above results is mostly one of philo-
sophical plausibility and familiarity. As it happens the above result can be
strengthened in a number of ways. For example, it also follows directly from
the above results that QLA and QLS are not expressively equivalent if the back-
ground modal logic is S4Alt3—where we also require that for all w, |R(w)| ≤ 3,
where R(w) = {v|Rwv}. Similarly, we can let out background modal logic be
S4M, or indeed any modal logic S for which the underlying frame of M (and
thus N ) is a frame for S.

Furthermore, we can also extend our background modal logic by also adding
principles which mix modal operators and the quantifiers. As DM and DN are
both monotonic in R (in the sense that if Rwv then Dw ⊆ Dv), the above result

7Note that, unlike the cases considered in [5], this holds even if we allow sentences which
are not subjunctively closed to be first-class logical citizens.
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holds even if we extend the background modal logic so that the converse Barcan
formula (CBF ) is valid.

(CBF ) : ∃x♦Fx→ ♦∃xFx.8

This suggests one way in which the proponent of SML can resist the above
counterexample: to demand that all models have constant domains. If we are
dealing with models with constant domains we will be able to represent (?) in
SML, because we can just move the quantifiers outside the scope of the ♦’s,
allowing us to represent (?) as:

(∃@x)(∃@y)[♦Fx ∧ ♦Fy ∧ x 6= y].

Of course, this solution commits us to everything which exists doing so necessar-
ily. Given that most people still tend to regard contingent existence, and hence
variable-domain semantics, as more philosophically plausible, this fix comes at
a cost in plausibility.9

5.1 What Fragment of AML has SML Equivalents

Having just shown that AML and SML-s are not equivalent over these weaker
background modal logics, the question arises as to whether there is some frag-
ment of AML which can be expressed in the language of subjunctive SML. To
make this question clearer, say that a formula ϕ ∈ LQA has an SML-s-equivalent
iff there is a formula ψ ∈ LQS s.t.

∀M :M |= ϕ ⇐⇒ M  ψ.

The notion of having an L-equivalent is a weakening of the notion of expressive
equivalence, two language L and L′ being expressively equivalent whenever every
L formula has an L′-equivalent and vise versa. What we want to know, then, is
what subset of AML formulas have SML-s-equivalents.

Say that a formula ϕ ∈ QLA is in the local-scope fragment whenever every
occurrence of the actuality operator in ϕ has scope only over primitive predica-
tions.

Proposition 5.6. Suppose that ϕ ∈ QLA is a formula which has an SML-s-
equivalent. Then ϕ is equivalent to a formula in the local-scope fragment of
AML.

Proof. Suppose that there is a formula ψ ∈ LQS s.t.

∀M :M |= ϕ ⇐⇒ M  ψ.

8This is not a subjunctively closed formula, of course. It is an interesting question what
kinds of modal definability results are available in SML in terms of subjunctively closed
formulas only. In this case we could make do with the formulas ∃@x♦Fx → ♦∃xFx and
�(∃x♦Fx→ ♦∃xFx) if we let our background modal logic be an extension of K4.

9Prime examples of dissenters from what we have painted as the philosophical orthodoxy
are [13] and [22], who defend constant domain quantified modal logic.
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As noted in Theorem 5.5 we know that:

∀M :M  ψ ⇐⇒ M |= τ(ψ).

So it follows, then that,

∀M :M |= ϕ ⇐⇒ M |= τ(ψ).

But τ(ψ) can readily be seen to be in the local-scope fragment of AML.

This result makes clear that the expressive deficit of SML-s entirely has to
do with its inability, in these weaker fragments, to deal with genuine world
travelling.

6 Monocosmic Operators and Predicate
Markers

What is going on here is that in logics weaker than S5, we are not able to move
modal operators out of the scope of the actuality operator. In describing what
is going on it is worth introducing the idea of an operator O being monocosmic
to use the term introduced in [10].10 Say that an operator O is monocosmic
whenever the following equivalences are all satisfied (relative to our semantic
apparatus) for all n-ary boolean connectives #:

O#(ϕ1, . . . , ϕn) ≡ #(Oϕ1, . . . , Oϕn). (3)

OOϕ ≡ Oϕ. (4)

O�ϕ ≡ �ϕ. (5)

O∃xϕ ≡ ∃OxOϕ. (6)

Here ∃Oxϕ is some kind of quantifier in the object language (most commonly
in our case ∃ or ∃@). The reason for being interested in an operator being
monocosmic is that such operators can be replaced by a new sort ofO-predicates,
the above equivalences allowing all instances of O to be ‘pushed inwards’ to
only have scope over primitive predications, at which point OFt1 . . . tn can be
replaced with FOt1 . . . tn. The failure of the expressive equivalence of AML and
SML arises here due to the fact that in S4 the actuality operator cannot be
pushed inwards over the box operator. As a result AML is expressively richer
than SML in this setting as, conceiving of our models as trees, we are able to
use the actuality operator to go back to the actual world and evaluate modal
formulas down different branches of our model, while all we are able to do in
SML is evaluate non-modal formulas at the actual world in the course of our
world-travelling (to use the evocative metaphor of [17]).

The importance of this result to the dispute between AML and SML is the
following. While S5 is generally thought of as the correct account of metaphys-
ical modality, there are a number of dissenters who have principled reasons for

10The following presentation follows that on p.47f of [10]
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endorsing weaker logics. For example, according to the combinatorial theory
of possibility endorsed by David Armstrong it is argued that the correct modal
logic for metaphysical modality is S4;11 similarly, on the basis of arguments
concerning the constitution of material objects others have endorsed even as
weak a logic as KT as the correct logic for metaphysical modality ([14]). In
formal semantics there is a methodological pressure to not pre-judge questions
as to what the correct metaphysics of a domains is. As a result it is a black
mark against the SML framework if, in order to match the expressive capacities
of AML, it is committed to the correct logic of metaphysical necessity must be
S5. To see that this is so consider how one would react to a theory of natural
language quantification which required that there be only finitely many objects.

7 Extensions of the Object-Language

This would seem to be bad news for this way of generalising the SML linguistic
framework in order to deal with weaker background modal logics. Of course,
the proponent of SML could deny the pull of the above methodological consid-
erations, insisting that (as Wehmeier claims in giving the semantics for SML),
that the choice of S5 as the background modal logic “matches the intuitive
semantics of ordinary English”[18, p.616]. This does not solve the problem,
though, as it will reoccur whenever we add an operator to the object language
which the actuality operator doesn’t distribute over–that is, any operator which
renders the actuality operator non-monocosmic. One simple such extension is
the addition to the language of a counterfactual conditional ‘�’. In this setting
the above problem will recur as, informally speaking, the introduction of the
counterfactual conditional into our language in effect reintroduces accessibility
relations into our semantics, albeit formula-relativized ones.

The semantics we are envisaging here is effectively the selection function
semantics from section 2.6 of [12] where we enrich our models with a function
f which takes a formula ϕ and a world w and yields a set f(ϕ,w) of the closest
ϕ-worlds to w (here we implicitly require that all the worlds y in f(ϕ,w) are
ones where ϕ is true). Of course we can equally well rewrite these semantics so
that we instead have, for each formula ϕ, an accessibility relation Rϕ such that
Rϕxy iff y ∈ f(ϕ, x)—for the sake of familiarity, though, we will stick with the
usual notation. Having so extended our models we can define truth at a point
in a model for AML-formulas whose principle connective is � as:

M |=w ϕ� ψ[σ] if and only if ∀v ∈ f(ϕ,w) we have M |=v ψ[σ].

Similarly, for SML-formulas with |= replaced by . To see that this causes
problems consider the case where we extend the models M and N so that

11Technically all that is argued on p.62 [1] is that the correct modal logic for metaphysi-
cal modality on the combinatorialist account does not prove the B axiom (i.e., p → �♦p).
This leaves open the (often overlooked) possibility that the correct logic could be one of the
many logics between S4 and S5, or a ⊆-incomparable extension of S4 like S4M (for more
information on which the reader should consult p.146 of [3], where M is referred to as Gc)
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there are nullary predicates A and B true, respectively, at w0 and w1, and set
f(A,@) = {w0} and f(B,@) = {w1}. Then we can show that the following
formula of QLA is true in M and false in N , while the two models are indis-
tinguishable in QLS—taking both languages to be extended by the inclusion of
the counterfactual conditional.

A� ∃x(Fx ∧ A(B� (∃y(Fy ∧ x 6= y)))). (7)

In order to bring out the significance of the situation being modelled, consider
a case where we have a partition on the space of worlds W , each side of the
partition agreeing upon A, and the actual world being an A-falsifying world.
Then we might wish to know whether F -ness is had by the same things in the
A-worlds as in the not-A-worlds. This question amounts to wondering whether
the following formula is true in the model, with � being the dual of �.12

A� ∃x(Fx ∧ A[¬A� (∃y(Fy ∧ x 6= y))]).

This is a nice example of one of the primary advantages which the actuality op-
erator has over having indicatively and subjunctively marked predicates, namely
that the actuality operator allows for ‘world-travelling’ of a kind which is pre-
cluded by merely having marked predicates. In fact this ability to facilitate
world-travelling by being able to operate upon arbitrary formulas is one of the
main reasons for preferring AML style languages to SML style ones.

Here again SML is expressively weaker than AML. This weakening of the
expressive capacities of our language would not be that worrying if it had no
impact upon the empirical adequacy of the two frameworks—if the kinds of
sentences which could be expressed in one framework in weaker background
logics, or by the presence of counterfactual conditionals, were just merely formal
artefacts. The case of the above counterfactual conditionals seem to suggest
otherwise, though. Consider the following sentence.

(8) If Australia had been a Dutch colony then someone would be Prime
Minister who wouldn’t have been Prime Minister had Australia been a
French colony.

This sentence appears to be one of the following form—the relative similarity
measure required by the embedded counterfactual being relative to the actual
world, rather than the world(s) which the antecedent directs us to.13

DC(Australia)� ∃x(PMx ∧ A(FC(Australia)� (∃y(PMy ∧ x 6= y)))).

It is easy to see that this is of the same form as (7), which cannot be expressed
in the obvious kind of extension of SML by the addition of �.

12Here we are assuming that f(A,@) = {w0} and f(¬A,@) = W \f(A,@)—i.e. f(¬A,@) =
{@, w1}.

13Sentences such as this one show how careful one must by when talking about the nesting of
subjunctive conditionals. This is an example where we have subjunctive conditions embedding
under other subjunctive conditionals syntactically in the sense that there is a subjunctive
conditional under the scope of another subjunctive conditional, but not semantically in sense
that evaluation of the conditional in the antecedent forces us to examine the worlds pertinent
to the truth of the antecedent. cf footnote 25 of [21].
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8 ‘Indicative’ Modal Operators

One other way which the proponent of SML may try and mitigate the problems
caused by the expressive weakness of the framework in weaker logics is to draw
the indicative/subjunctive distinction at the level of operators as well as at the
level of predicates and quantifiers. In essence this is what Wehmeier does in
‘Subjunctivity and Conditionals’, treating the subjunctive conditional (which
we will now write as ‘>’ to facilitate comparison with ‘�’ above) so that when
evaluating ϕ > ψ at w we check the truth of ψ at the nearest ϕ worlds to @.

M w ϕ > ψ[σ] if and only if ∀v ∈ f(ϕ,@) we have M v ψ[σ].

With a conditional like ‘>’ we can treat sentences like (7) as follows:

DC(Australia) > ∃x(PMx ∧ (FC(Australia) > (∃y(PMy ∧ x 6= y)))).

As a treatment of subjunctive conditionals the conditional ‘>’ requires that
there be no true embeddings of conditionals in the consequents of subjunctive
conditionals—e.g. that there be no true sentences which would be represented
as A� (B� C) in the �-language, otherwise this approach will generate
the wrong truth conditions. We will leave that aside for the moment, though,
to mention how this kind of approach is thought to help the SML framework
deal with expressive difficulties.

In our generalisation of the SML-s framework to weaker modal logics we
gave a semantic treatment for the modal operators which uses accessibility re-
lations according to which the truth of a box or diamond formula at a world w
depends upon the worlds which are R-accessible from w, as is commonly done
in traditional accounts of the weaker modal logics. Generalising the indica-
tive/subjunctive distinction to operators, this involves thinking of the modal
operators as being ‘subjunctive’ in the sense that their truth at a world de-
pends upon goings on at that world. This kind of contrast already needs to be
drawn in quantified versions of SML and AML in the form of the indicative and
subjunctive quantifiers. Thus the proponent of SML might think of the modal
operator as being ‘indicative’, as discussed briefly above in §3, with the truth
in a model of ♦-formulas in this sense (annotated i) being as follows:

M i
w ♦A if and only if ∃v(R@v and M i

v A).

Here we use i to indicate truth at a point in a model on this new construal of
the SML framework, which we will call SML-i for ‘SML with indicative modal
operator’. This semantics for the modal operator is very similar to what is
called the ‘centred semantics’ for the knowledge operator given in [2, p.183f].
In the centred semantics for knowledge, formulas such as Kϕ (as we will write
Bonnay and Ègreè’s epistemic modal operator) are evaluated relative to a pair
of worlds (w,w′) where the truth of Kϕ at a pair (w,w′) requires that ϕ be true
at all points w′′ such that Rww′′. This is just like our SML-i �ϕ, except with
the world w being an explicit parameter relative to which we evaluate the truth
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of formulas, rather than a part of our models. It’s also clear that the SML-i
formula �ϕ is equivalent to the AML formula A�ϕ.

What we will now argue is that the SML-i is properly expressively weaker
than AML where the background modal logic is weaker than S5, much like we
did above for SML-s. Unlike the example in §5, though, we will only need to
consider the propositional fragment of the two languages here—our models being
structures of the form 〈W,@, R, V 〉 where W is a non-empty set (of worlds), @
a world in W (the actual world), R ⊆ W × W and V a function from the
(subjunctive) propositional variables to subsets of W . Consider the frame F =
〈{0, 1, 2}, 0,≤〉, and let M = 〈F, V 〉 and Ms = 〈F, Vs〉 (the ‘s’ being mnemonic
for ‘swap’) be models on this frame, where V and Vs are as follows.

• V (p) = {2}.

• Vs(p) = {1}.

These two models are both distinguishable in the standard propositional
actuality language, as recorded below.

Proposition 8.1. M |=@ ♦�p and Ms 6|=@ ♦�p.

What we will now show, though, is that these two models prove the same
SML-i formulas. In order to see why this is so it is helpful to consider a mod-
ification of our models (over transitive, reflexive frames), and semantics, which
brings out what is distinctive about the indicative modal operators. In evaluat-
ing SML-i formulas we can dispense with the accessibility relation R, replacing
it instead with the set X = {x|R@x}, making our models structures of the form
〈W,@, X, V 〉, with the truth in a model conditions for ♦ formulas in SML-i
become:

M i
w ♦ϕ if and only if for some w′ ∈ X :M i

w′ ϕ.

We will not use these new models in what follows, but it is easy to see that
M and Ms validate the same SML-i formulas if one can understand why we
can move from standard models with accessibility relations to models like those
we’ve just described.

Proposition 8.2. Given the models M and Ms, let f be the function from
{0, 1, 2} to {0, 1, 2} such that: f(w) = (w + 1)mod2 if w > 0 and f(w) = w
otherwise. Then for all formulas ϕ in the language of propositional SML we
have the following:

M i
w ϕ iff Ms 

i
f(w) ϕ.

Proof. By induction on the complexity of A. The basis case is handled by the
fact that f(V (p)) = Vs(p), and the inductive case for ♦-formulas following from
the fact outlined above that the truth of ♦-formulas only depend upon the set
R(0), which is the same in both models.

Theorem 8.3. SML-i is properly expressively weaker than AML when the back-
ground modal logic is S4.
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Proof. Follows from Propositions 8.1 and 8.2, and the fact noted above that the
SML-i ♦ϕ is just the AML A♦ϕ.

If the proponent of the SML framework takes the modal operator to be
‘indicative’ then their framework will still be properly expressively weaker than
the AML framework—leaving them in no better position than if they took
the modal operator to be ‘subjunctive’.14 The proponent of SML could, of
course, take their language to contain both an indicative and subjunctive modal
operator, and if they did this they would end up with a language which is
expressively equivalent to AML over any framework. Let the SML-is language
be the language we get when we enrich the language QLS by the addition of
a new modal operator ♦i.15 Let truth in a model for SML-is be as for SML-s
with the following added clause.

M, σ w ♦iϕ if and only if ∃w′(R@w′ & M w′ ϕ).

Theorem 8.4. SML-is and AML are expressively equivalent over every back-
ground modal logic.

Proof. We sketch the relevant transformations. Giving an AML formula ψ true
in the same models as a given SML-is formula ϕ is simple: replace Fa1 . . . an
with AFa1 . . . an, ∃xA with ∃@xA and ♦iA with A♦A, and then remove all
subjunctive markers. To given an equivalent SML-is formula ψ true in the same
models as a given AML formula ϕ we need to replace every modal operator
under the direct scope of an actuality operator with its indicative counterpart,
and every predication and quantifier not under the direct scope of an actuality
operator with its subjunctively marked counterpart.

This provide a general method by which the proponent of SML can keep
their language expressively equivalent to any extension of an AML language—
simply add both an indicative and subjunctive version of the new piece of modal
vocabulary. Of course, this leaves them in the unsatisfying position have having
to claim that there is a hidden ambiguity between indicative and subjunctive
versions of the modal operators. In many ways this seems to be a less comfort-
able position than having to posit a distinction between a ‘weak’ and ‘strong’
indicative mood (e.g. the distinction between Fa being true at @, and AFa
being true at @) which proponents of SML claim is a commitment of AML
frameworks. At the very least it puts them in the position (much like the AML
theorist) of having to give some explanation for this ambiguity.

There is a further possibility which brings out quite naturally the fact that
these expressive inadequacies are arising due to the fact that we have traded

14Adopting then SML-i framework does not give the SML theorist much freedom concerning
what background modal logics are available. The logic in the SML-i language determined by
the class of all frames is K45, over all serial frames KD45, and over all reflexive frames S5.
So, in fact, the only alethic modal logic available to the SML-i theorist is S5 itself. Thanks
to an anonymous referee for pointing this out.

15The idea of considering a language with both indicative and subjunctive modal operators
is due to unpublished work by Helge Rückert.
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in an operator for a class of marked predicates. On this alternative approach,
rather than adding a new class of indicative predicates, the proponent of the
SML approach can treat all predicates as by default indicative, and add a sub-
junctivity operator S à la [9]. Here the general idea (which generalises the
treatment given by Humberstone) would be to have all formulas by default
evaluated indicatively—taking this to mean that not only are predicates not
under the scope of an S evaluated at the actual world, but also all modal oper-
ators are treated in the SML-i fashion unless they occur under the scope of an
S operator, in which case they are treated in the manner described in §3. We
will not dwell on the relative merits of this alternative here, though.

9 Conclusion

If we take seriously the idea that our formal semantic theories should not pre-
judge metaphysical issues, the above results show that the SML theorist is on less
solid ground than they might at first appear to be. Weakening the background
modal logic presents the SML theorist with a choice between three different
ways of fleshing out the SML linguistic framework: (i) take modal operators
to be ‘subjunctive’, (ii) take them to be ‘indicative’, or (iii) to use a mixed
language with both ‘indicative’ and ‘subjunctive’ modal operators. All three of
these options appear to have their costs, though. Taking option (i) leaves the
SML theorist with a language which is not only expressively weaker than AML
language (as shown in §4) but if this option is lifted to other kinds of modal
operators like subjunctive conditionals then their framework ends up being em-
pirically inadequate (§7). Taking option (ii) the SML theorist still ends up with
an expressively weaker language, this time even at the propositional level, but
is able to deal with examples of the kind mentioned in §7. Lastly, taking option
(iii) the SML theorist ends up with a language which is expressively equivalent
to the AML language. To do this, though, the SML theorist ends up having
to posit two senses of possibility—an indicative and a subjunctive one. This
would seem to, at best, put the SML theorist on even footing with the AML
theorist, who is charged with having to posit two kinds of indicatives. Despite
this it is clear that the mixed SML-is language is the SML theorists best hope
for dealing with weaker background logics, and is deserving of further technical
and philosophical investigation.

More generally, these results show a reason to be concerned by arguments in
favour of less-comprehensive frameworks on the basis of the presence of mono-
cosmic operators—as whether or not an operator is monocosmic is quite sensitive
to features of the object language. Whether there are more general reasons to
be concerned about such arguments remains to be seen.
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T. Räsch, and W. Malzkorn, (eds.), Foundations of the Formal Sciences
II, Kluwer, 2003, pp. 257–260.

[18] Wehmeier, K.F., ‘In the Mood’, Journal of Philosophical Logic, 33 (2004),
607–630.

[19] Wehmeier, K.F., ‘Modality, mood, and descriptions’, in R. Kahle,
(ed.), Intensionality—an Interdisciplinary Discussion, AK Peters, Welles-
ley, Mass., 2005, pp. 187–216.

[20] Wehmeier, K.F., ‘Subjunctivity and cross-world predication’, Philosoph-
ical Studies, 159 (2012), 107–122.

[21] Wehmeier, K.F., ‘Subjunctivity and Conditionals’, The Journal of Phi-
losophy, 110 (2013), 117–142.

[22] Williamson, T., ‘Bare possibilia’, Erkenntnis, 48 (1998), 257–273.

22


	Introduction
	Preliminaries
	Introducing AML and SML
	Subjunctive-SML Morphisms
	Two Equivalent SML-models
	What Fragment of AML has SML Equivalents

	Monocosmic Operators and Predicate Markers
	Extensions of the Object-Language
	`Indicative' Modal Operators
	Conclusion

