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Abstract

What does it take for two logics to be mere notational variants? �e

present paper proposes a variety of different ways of cashing out notational

variance, in particular isolating a constraint on any reasonable account of

notational variance which makes plausible that the only kinds of transla-

tions which can witness notational variance are what are sometimes called

definitional translations.

1 Introduction
Could it be that logical pluralists are simply confused, counting certain logics as

distinct when they differ only superficially? Given that natural language does not

wear its logical form on its sleeve this is at least an open possibility. Moreover, in

at least some cases it does appear that we have pairs of logics which differ only

superficially. What kinds of differences between logics are merely superficial,

though? Susan Haack proposes the following:

[S]uppose one were to ask how ‘classical logic’ is to be demarcated. �is is

to be done, I have supposed, by reference to its set of theorems and valid in-

ferences. Any system with the same theorems/inferences as, say, Principia
Mathematica, counts as a formulation, a version, of ‘classical logic’. In par-
ticular a systemwhich differs from that of PM only in employing a distinct,

but intertranslatable, notation – say ‘&’ in place of ‘.’ for conjunction – is

only a notational variant of classical logic. (Haack, 1974, p.7)

Haackhere gives a suggestion forwhat kinds of differences between logics are

merely superficial, and thus don’t make a ‘real’ difference to which logic is picked

out. In particular Haack suggests that at least one way in which logics can differ

superficially is by differing typographically, or to put things into more congenial
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terminology, one way for logics to be notational variants is for them to be typo-

graphical variants. As we will understand the term here two logics are notational
variants if and only if the only differences between them are merely superficial.

�is characterisation is vague, and one of the goals of this paper is to attempt to

better understand the kinds of differences between logics which are merely su-

perficial.

Questions of notational variance are, as we will see, paradigmatically ques-

tions about translations between logics, and we will approach the question of

what kinds of differences between different logics are merely superficial by fo-

cusing on different properties concerning translations between logics. To do this

we will begin in section 2 by fixing some notation and terminology concerning

translations, before in section 3 introducing the notion, which we call ‘strict no-

tational variance’, which most people probably think of when they think of nota-

tional variance. Strict notational variance turns out to be far too strict an account

of notational variance to accordwith some of our logician’s intuitions concerning

which logics differ merely superficially, and so in section 4 we start to sketch out

a more tolerant account of notational variance, isolating an important ‘external’

constraint on notational variance which we use in section 5 to show that various

logics are not notational variants. We then give our tentative characterisation of

this more tolerant version of notational variance in section 6, and close by giv-

ing some broader consequences which flow frompaying attention to the external

constraint which is at the heart of our tolerant account of notational variance.

Before doing that, though, let us take a further look at what has been said in the

literature on superficial differences between logics and languages.

1.1 Notational Variance and Superficial Difference
In thequotationwithwhichweopened this paperHaack appears to be suggesting

that it is at least a sufficient condition for a pair of logics to be notational variants

that they be typographical variants. If we regard this as a sufficient condition

we end up with something in the vicinity of what in section 3 we call ‘strict nota-

tional variance’. Prima facie this is far too stringent an account ofwhat it takes for

two logics to differ superficially, and definitely won’t do for capturing the notion

which logical pluralists are interested in— as the {∧,¬}- and {∨,¬}-fragments of

classical truth-functional logic are not strict notational variants, and yet it seems

that any difference between these two logics is merely superficial. In subsequent

work Haack appears to be aware of this issue, as we can see in the following quo-

tation.

I shall suggest two accounts of ‘the same system’, one broader and one nar-

rower, each suitable for certain purposes.
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�enarrower sense: L1 and L2 are alternative formulations of the same sys-

tem if they have the same axioms and/or rules of inference once allowance

has been made for differences of notation (e.g. replacing ‘&’ by ‘.’) and of

primitive constants (e.g. replacing ‘p&q’ by ‘¬(¬p∨ ¬q)’).

�e broader sense: L1 and L2 are alternative formulations of the same sys-

tem if they have the same theorems and valid inferences once allowance has

been made for differences of notation and primitive constants. (Haack,

1978, p.21)

In both Haack’s ‘narrow’ and ‘broad’ sense of two logics being merely super-

ficially distinct allowance is made not just for mere typographical differences be-

tween the underlying languages (essentially our strict notational variance), but

also for which connectives are taken as primitive. �ismore liberal notion, which

allows for notational variants to differ in their choice of primitives, ismore in the

direction of our notion of tolerant notational variance, and as we will see this is

plausibly themost liberalnotion to satisfyourexternal constraint. �roughoutwe

will be concerned with accounts more akin to Haack’s broader sense of two log-

ics being the same system, there being some prima facie problems with Haack’s

narrower sense as stated.
1

Discussions of notational variance are not restricted to philosophical logic, of

course. In fact the termhas earlier providence in discussions of formal grammar,

with Chomsky noting that:

[g]iven alternative formulations of a theory of grammar, onemust first seek

to determine how they differ in their empirical consequences, and then try

to find ways to compare them in the area of difference. It is easy to be mis-

led into assuming that differently formulated theories actually do differ in

1
As was first noted in Hiz (1958), there are some general difficulties which one has to be aware

of when translating axioms if we wish to have our two proof systems in different languages char-

acterise the same logic, difficulties which mean that as stated Haack’s narrower sense of nota-

tional variance will not result in different proof systems for the same logic. To take an instructive

example of this from Humberstone (2004b, p.396–400), consider the standard proof system for

the least normal modal logic K in the language with primitive connectives→, ¬ and �, which
results by extending a set of axiom schemata sufficient (with Modus Ponens) for classical propo-

sitional logic by all instances of the axiom K (=�(A → B) → (�A → �B)) and closing under
the rules of Modus Ponens and Necessitation (which takes us from ` A to ` �A). If we translate
these axioms into the language with primitive connectives→, ¬ and3, making use of the defi-
nition of �A as ¬3¬A, then we end up with a proof system K3 in which, as noted in Corollary

3.2 of Humberstone (2004b, p.399), we cannot prove 3p → 3¬¬p (while we are able to prove

¬�¬p → ¬�¬¬¬p in K). What Haack’s criterion misses out (and this is the core moral of Hiz
(1958)) is that when we translate between axiom systems we need to make sure that, if we take

the definition as ametalinguistic abbreviation, the definition in question is provable in the target

system.
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empirical consequences,when in fact they are intertranslatable—ina sense,

mere notational variants. (Chomsky, 1972, p.69)

Here Chomsky appears to be understanding two grammatical theories to be

notational variants whenever they are, in essence, empirically equivalent—i.e.

agree in all their empirical consequences. Johnson (2015) is an excellent discus-

sion of this notion of notational variance in linguistics. Similar claims about no-

tational variance are also sometimesmade when discussing semantic theories of

various kinds, for example in Stojanovic (2007). �ere it is claimed that minimal

versions of contextualist and relativist semantic theories of taste ascriptions are

intertranslatable, and thus that ‘there is never going to be any properly seman-

tic evidence to cut in favor of the one account over the other’ Stojanovic (2007,

p.703), as any statement which one semantic theory predicts as coming out true

in a given situation, the other will also predict as coming out true—the transla-

tion showing us how. �is again seems to be suggesting that, at least in some

sense, the only differences between these two theories are superficial.

2 Translations&Notational Variance
All of the quotations above characterised notational variance as, in someway, in-

volving two formal languages being in some sense intertranslatable, and in the

cases where logics were concerned the adequacy of these translations was tied to

particular logics defined over these languages. Beforewe go on, then,wewill first

need to settle some notational and terminological issues concerning translations

and formal languages. We will largely concern ourselves only with propositional

languages (largely keeping any mention of first-order languages to asides). Fol-

lowingWojcicki (1988, p.14) and others, we will think of a propositional language

L as an absolutely free algebra, the generators of which are a denumerable set

p1, p2, p3, . . . of propositional variables, and whose operations are the connectives
of that language. Moreover, we will think of the extension of a languageL by the

addition of a new n-ary operator # as the absolutely free algebra with the same

generators as that of L, and whose operations are those of L along with a new

n-ary operation #, calling such a languageL#
.

�roughout we will think of logics as consequence relations. Given a pair of

consequence relations `1 and `2 we will say that a translation is a total function τ
from the language of `1 to the language of `2, and say that τ faithfully embeds `1
into`2 whenever we have, for all formulasA1, . . . , An, B in the language of`1 the
following condition being satisfied.

A1, . . . , An `1 B if and only if τ(A1), . . . , τ(An) `2 τ(B). (1)
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�e word ‘faithfully’ here records the ‘if ’ direction of this condition. Faithful

translations are variously called ‘conservative’ in Silva et al. (1999) and Feitosa and

D’Ottaviano (2001), ‘unprovability preserving’ in Inoué (1990), and ‘exact’ in Pel-

letier and Urquhart (2003). Translations which are not necessarily faithful (and

thus only satisfy the ‘only if ’ direction of condition (1)) are usually called simply

‘translations’, or ‘sound translations’. We will be concerned with various con-

straints on the way in which translations respect the structure of formulas. In

particular, given a translation τ fromL1 toL2, let us say that τ is

• variable-fixed if τ(pi) = pi, for every propositional variable pi

• compositional if for every primitive n-ary connective # in the language
of L1 there is a formula #

τ(p1, . . . , pn) in the language of L2 con-

structed out of n propositional variables such that τ(#(A1, . . . , An)) =

#
τ(τ(A1), . . . , τ(An)).

�e labels above are taken from Humberstone (2005). Translations which are

compositional and meet the condition that τ(pi) = C(pi) for some formula

C(p) containing only the propositional variable p, are called grammatical in Ep-
stein (1990). Translations which are both compositional and variable fixed are

called definitional in Wojcicki (1988, p.69f), and will be of special importance
in section 6. �ese conditions are quite common in the literature, and some-

times are imposed as part of what it means for a function from one language

to another to be a translation. Less familiarly, we will say that a pair of trans-

lations τ1, τ2 from L1 to L2 are (weakly) recursively interdependent if they are
both variable-fixed, and compositional on all connectives # except for on con-

nectives #1 and #2 where τ1(#1(A1, . . . , An)) = #
τ1
1 (τ2(A1), . . . , τ2(An)) and

τ2(#2(A1, . . . , Am)) = #
τ2
2 (τ1(A1), . . . , τ1(Am)).

2
Examples of translations

which are weakly recursively interdependent can be seen in the translation be-

tween Data Logic and the modal logic S4M in van Benthem (1986, p.234), and in

the translation betweenAML and SML as presented in French (2013, p.1692). We

will see another example of a weakly recursively interdependent translation be-

low. A survey containing further examples of translationsmeeting all of the vari-

ous combinationsof the conditionsgivenhere canbe found inChapter 2ofFrench

(2011).

�e idea behind cashing out notational variance in terms of translations is

that we can see a translation τ as telling us the manner in which `1 is genuinely
similar to `2, with tighter constraints on τ reflecting a more restricted under-
standing of the kinds of differences which we should regard as being merely su-

2
�is condition is a special case of themore general notion of a set of translations being recur-

sively interdependent discussed in French (2011, p.16).
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perficial. So if`1 and`2 arenotational variantswewouldexpect there tobe trans-
lations τ1 and τ2 such that τ1 faithfully embeds `1 into `2, and similarly for τ2.
�is gives us some degree of common ground against which to assess the propos-

als we will consider below.

3 Strict Notational Variance
Whether two languages are notational variants ought not be sensitive to theman-

ner in which their respective languages are formulated. One initial way of bring-

ing out this general idea is to beginwith an extremely language-sensitive account

ofnotational variance, themore language insensitive versionof this beingourno-

tion of strict notational variance.

Let us temporarily think of formulas in our language as strings of symbols,

rather than (as in our preferred approach described above) as elements in a par-

ticular kind of algebra. Onewaywemight try to characterise notational variance,

then, is in terms of symbol-for-symbol replacement—providing a functionwhich

uniformlymaps each symbol of the one language to a symbol of the other. �is is

one way of understanding Haack’s quotation above, suggesting the ‘symbol map’

which maps the symbol ‘.’ to ‘&’ or vice versa, and otherwise acts as the identity

function on all other symbols. Such a symbol-for-symbol replacement view of the

translationswhich render logics notational variantswould render differences be-

tween presentations of the same language in Russellian and Polish notation as

being substantial, rather than merely superficial. For example, let us consider

pure implicational logic. Formulas of the languageLR are determined as follows,

where
_
denotes string concatenation.

• A propositional variable pi is a formula.

• IfA is a formula and B is a formula then ‘(’_A_ → _B_
‘)’ is a formula.

• Nothing else is a formula

Similarly, the languageLP is determined as follows.

• A propositional variable pi is a formula.

• If α is a formula and β is a formula thenC_α_β is a formula.

• Nothing else is a formula

Now consider the formula Cpp from LP. What symbol in the language of LR
could we replace C with that would turn this into a formula of LR, let alone one

which will be interpreted appropriately? By simple inspection we can see that
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there can be no such symbol-for-symbol replacement, allowing us to conclude

that these two languages are not, on this account, notational variants. While

Arthur Prior would, perhaps, welcome such a result, this seems otherwise dis-

tinctly undesirable. �ese two languages really are notational variants.

Oneway of respecting the intuition behind such a viewof notational variance,

without falling into unseemly language dependence, is to stop thinking in terms

of such symbol-for-symbol replacements and instead think in terms of what in

Beziau (1999, p.147) are referred to as language-isomorphisms. In the present no-
tation a translation τ from L1 to L2 is a language isomorphism iff τ is a defini-

tional translationwhere each #
τ(p1, . . . , pn) is of the form ](p1, . . . , pn) for some

primitive n-ary connective ] in the language of L2. If we write # 7→ ] whenever

#
τ(p1, . . . , pn) = ](p1, . . . , pn), we will also want to enforce the condition that

# 7→ ] 7→ #, reflecting the idea that the only difference between L1 and L2 is

that in L1 we write ‘#’ for what in L2 we write as ‘]’. We can then say two log-

ics `1 and `2 are strict notational variants iff there are language isomorphisms
τ1 and τ2 which faithfully embed `1 into `2 and `2 into `1, respectively, and
additionally satisfy the requirement that τ2(τ1(A)) = A and τ1(τ2(A)) = A,

this latter condition following from the constraint that # 7→ ] 7→ #. In Wojci-

cki (1988, p.67) this notion is offered as an account of ‘what it is for two logics to

coincideup tonotation’, strict notational variants there being referred to as ‘nota-

tional copies’ of one another. It is easy to see that the functions τ and τ –1, where

τ(Cαβ) = (τ(α) → τ(β)), are language isomorphisms between LP and LR, so

this notion is at least not quite so sensitive to the manner in which a language is

presented.

In many ways cases like the one we have discussed in this section, and that

used by Haack, are rather staid. �ere are some more interesting examples of

even this very restrictive notion to hand, though. For example, let `1 be the
consequence relation for the single-variable monadic fragment of first-order

logic— the first-order language without identity or individual constants with

only monadic predicates and a single quantified variable in which, for example,

∀xFx ∧ ∀xGx is a formula, while ∀x∀y(Gx ∧ Gy) and ∀x∀yRxy are not—which
holds between a set of formulas and a formula if on any variable assignment if

all the formulas in the set are satisfied on that variable assignment, then so is

the conclusion formula. Let `2 be the so-called local consequence relation for the
normal modal logic S5which requires truth preservation at a point in a universal
Kripke-model.

3
InWajsberg (1933) it is shown that these two languages are strict

notational variants,withwhat is therewritten as |A|beingwhatwewouldwrite as

either ∀xAx or�A. Technically, as we have defined it above, these two languages
arenot isomorphic, as any relevant translationwouldnot be variable-fixed. In the

3
For more on this theme see Porte (1982).
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case where languages do not have the same stock of atomic expressions we ought

to weaken this requirement to that of translating atomic expressions of the one

language (e.g. propositional variables) as atomic expressions of the other (e.g.

primitive unary predications). Further, it is interesting to note that in order for

these two languages to count as isomorphic we also need to treat ‘∀x’ as a single
syntactical unit, rather than as as two (a quantifier which binds a variable). �is

last consideration points towards an interesting way in which this notion is sen-

sitive to very subtle syntactical differences.

4 Towards amore Tolerant Notational Variance
Strict notational variance does an admirable job of formalising the idea that the

only kinds of superficial differences whichmake for notational variants are typo-

graphical differences, where typographical differences are captured by the pres-

ence of language isomorphisms. It does a poor job, though, of capturing the com-

mon thought that logics which differ only in which sets of interdefinable connec-

tives we take as primitive differ only superficially. �is suggests that the kinds of

translationswhichweought tobe concernedwith shouldbemore liberal than lan-

guage isomorphisms. How liberal ought we to be concerning the kinds of trans-

lations we are after in order to capture this more liberal notion, though?

Krister Segerberg, in giving an informal account of his notion of ‘syntactic

equivalence’ says that two logics ‘come to the same thing’ if

[I]n the first place the languages in which they are formulated are

intertranslatable—if what can be expressed in one language can be ex-

pressed in the other one, too—and secondly whenever an argument in the

one logic is valid, then its counterpart in the other is also valid. (Segerberg,

1982, p.42f)

Segerberg thenproposes tomake thismoreprecisebyproposing the following

account of when two logics are syntactically equivalent.

Definition 4.1. Two logics `1 and `2 are syntactically equivalent iff there are transla-
tions τ1 and τ2 such that τ1 faithfully embeds`1 into`2, τ2 faithfully embeds`2 into`1,
and in addition we have the following ‘inverse’ conditions satisfied:

A a`1 τ2(τ1(A))
A a`2 τ1(τ2(A))

Note that if we restrict ourselves to translations which are language isomor-

phisms this gives us our definition of strict notational variance above. What
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is worth noting is that Sergerberg himself formally places no restrictions on

the structure of the translations which witness two logics being syntactically

equivalent—resulting in a very permissive account of when two logics are nota-

tional variants. �ework of the rest of this article will be concernedwith showing

that, while this definition captures much of what wemight (speakingmetaphor-

ically) think of as capturing the ‘internal’ or ‘language static’ aspects of notational

variance, it fails to capture what we might think of as its ‘external’ or ‘language

dynamic’ aspects.

�ere are various external features of pairs of logics whichwemight think are

relevant to thembeing notational variants. Having isomorphic spaces of theories

is one which is isolated by Caleiro and Gonçalves (2007) as being a core desider-

ata for two logics ‘coming to the same thing’. �emain example of such a feature

we will be concerned with here has to do with the extent to which matters of no-

tational variance should be insensitive to the addition of new, uniformly treated,

vocabulary. In particular, I want to argue that if two logics are notational variants

then if we add a new operator with the same intrinsic properties to both of their

languages, then the resulting logics should also be notational variants. To give

our main motivating example, if two propositional non-modal logics are nota-

tional variants, then their modal extensions ought to be notational variants also.

Why think this? Because having certain notational variants ought to be an intrin-

sic property of a logical system, and so should not be disturbed by expanding the

language. Such disturbances, when they occur, would seem to suggest that the

appearance that two logics are notational variants is dependant on some extrin-

sic feature of the particular expressive resources of the logics involved, resulting

in the putative notational variance being an apparently relational (and thus not

intrinsic) matter.

�is line of thought suggests the following, somewhat informal, constraint on

when two logics are notational variants.

(External Equivalence) If `1 and `2 are notational variants, then for
every way of extending `1 and `2 by the addition of a new operator
# with the same properties in both logics should also be notational

variants.

How should we understand the idea of two logics both being extended by the

addition of a new operator which has the same properties in both logics? Here it

is perhaps simplest to shift from thinking about translations and notational vari-

ance in the (perhaps somewhat austere) terms we have been so far, with logics

considered as consequence relations being our sole object of study, to thinking in

more semantic terms.
4
Let us briefly consider the following question: how do we

4
In discussing tolerant notational variance belowwewill present amore syntactic notion ofwhat
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add a normal modal operator to a many-valued logic? By far the most straight-

forward way is to take the standard possible worlds semantics and, in essence,

treat each world as a model for our many-valued logic, i.e. a many-valued valua-

tion. We then interpret our modal operator as being true at a world just in case

the formula it is applied to is true at all the accessible worlds.
5
�is is to add a

(normal) modal operator to a many-valued logic in an analogous manner to how

we add them to classical propositional logic. Prima facie this strikes me as a case

where we have added a modal operator to a many-valued logic in the same way

that we usually add it to classical logic, and with the same intrinsic properties.

�is heuristic will not, of course, work in all cases, but given that the particular

case we are concerned with is one where the logics in question are largely moti-

vated semantically, and appear to not be notational variants when a modal oper-

ator is added to their languages, it will do for our present purposes. In order to

more fully understand this proposed constraint, though, we would ideally want

a fuller understanding of when extensions of a pair of logics treat an introduced

piece of vocabulary in the same way.

Let us, then, think of our logics as being given to us semantically in terms

of classes of modelsMod(`), where Γ ` A just in case every model in which

all the members of Γ are true is a model in which A is true. In the present case

we will mainly be concerned with the case where our classes of models are either

boolean valuations or Kripke models. In particular, given a logic `i determined
by a class of boolean valuation Vi, let us then say that the modal lifting of `i is
the class of Vi-Kripke models 〈W,R, V〉, whereW is a non-empty set (of worlds),

R ⊆W ×W a binary relation of accessibility, and where V assigns to each world

w ∈ W a Vi-valuation vw where vw(3A) = T iff there is aw ′ ∈ W wherewRw ′

and vw ′(A) = T . �e logic `3
i determined by the modal lifting of `i is then the

one which holds between a set of formulas Γ ⊆ L3
i and formula A ∈ L3

i just

in case, for all Vi-Kripke modelsM if all the formulas in Γ are true at a world w

inM, then so is A. Against this background, then, let us consider the following

condition.

(Modal Extension) If `1 and `2 are notational variants, then the log-
ics determined by their modal liftings `3

1 and `
3
2 are also notational

variants.

Satisfying (Modal Extension) is, given the above understanding of what it is

for an operator to have the same intrinsic properties in two logics, a necessary

it is to extend a pair of logics by an operator which behaves the sameway in both languages which

relies there on some particular features of tolerant notational variance.

5
Essentially this way of treating many-valued modal logic is proposed in Priest (2008, p.242),

although there we are given a slightly more nuanced treatment of the modal operators than is

required here.
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condition for satisfying (External Equivalence), and it is on this condition which

we will focus in the next section to demonstrate the failure of syntactic equiva-

lence to imply external equivalence. To do that we will make use of a plausible

connection between notational variance and expressive equivalence (introduced

below). �e intuition here is simple, if two logics are notational variants and are

determined by classes of models of the same kind (i.e. boolean valuations, or

Kripke models), then they ought to be able to say the same things about those

models.

�is consideration gives rise to the following general principle:

(Expressivity) If `1 and `2 are notational variants determined by
models of the same kind then `1 and `2 are expressively equivalent
over those models.

In what followswewill only need tomake use of the case whereMod(`1) and
Mod(`2) are classes of Kripkemodels, but the general point ought to hold for any
logics determined by the same kinds of models.

Definition 4.2. Suppose that`1 and`2 are such thatMod(`1) andMod(`2) are both
classes of Kripke models. Let us say that`1 and`2 are expressively equivalent iff

∀ϕ ∈ L1∃ψ ∈ L2∀M ∈Mod(`1) : M |=1 ϕ ⇐⇒ g(M) |=2 ψ.

∀ψ ∈ L2∃ϕ ∈ L1∀M ∈Mod(`1) : M |=1 ϕ ⇐⇒ g(M) |=2 ψ.

where g is a bijection between Mod(`1) and Mod(`2) such that g(〈W,R, V〉) =

〈W,R, V ′〉 for someV ′.

�is definition differs in a number of ways from standard definitions of ex-

pressive equivalence, but is analogous to thedefinitions given inMelia (1992, p.53)

and French (2015, p.241).

5 Failures of External Equivalence
�e two languages we will primarily be concerned with in this section are the fol-

lowing. LetL1 be the languageconstructedoutof adenumerable supplyofpropo-

sitional variables p1, p2, p3, . . . using the unary connective ¬ for negation, and

the binary connective ∧ of conjunction. Let L2 be the language constructed out

of two-sorts of propositional variablesp1, p2, p3, . . . andp
⊥
1 , p

⊥
2 , p

⊥
3 , . . .using the

boolean connectives ∧ of conjunction and ∨ of disjunction. �e language L2 is

inspired by the kind of language used in Tait (1968), which draws inspiration from
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a notational convention due to Schütte. Intuitively we are to think of p⊥ as being

the negation ofp. Essentially this language is used in Burgess (2009, pp.107–108)

in a discussion of how to understanding negation in Anderson & Belnap’s logic

of first-degree entailment (FDE). Suppose that, given a formulaA, we use the de

Morgan equivalences to push negations inwards so that they have scope only over

propositional variables and then replace all occurrences of ¬pi with p
⊥
i , and call

the resulting formula A∗. �en Burgess’s idea is that we can say that A ` B is
FDE-valid iff A∗ ` B∗ is classically valid, where we treat p⊥ as an arbitrary new
propositional variable. Here we will be givingL2 amore ‘classical’ semantics, in-

terpreting both it and L1 using boolean valuations: functions from the language

to the set {T, F}. In particular, let us say that a valuation v is:

• ∧-boolean iff v(A∧ B) = T iff v(A) = T and v(B) = T

• ∨-boolean iff v(A∨ B) = T iff v(A) = T or v(B) = T

• ¬-boolean iff v(¬A) = T iff v(A) = F

• Tait-Schütte iff v(pi) = T iff v(p⊥i ) = F

We will interpret L1 semantically using the class V1 of ∧- and ¬-boolean valua-

tions, andL2 using the class V2 of all∧- and∨-boolean Tait-Schütte valuations.

We can then think of`1 as being the consequence relationwhich holds between a
set of formulas {A1, . . . , An} and a formula B fromL1 iff for all v ∈ V1 whenever
v(Ai) = T for all 1 6 i 6 n we have v(B) = T , and similarly for `2 and V2. It
is easy to demonstrate that these two languages are syntactically equivalent ac-

cording to the following translations.

τ1(pi) = pi τn(pi) = p
⊥
i

τ1(A∧ B) = τ1(A)∧ τ1(B) τn(A∧ B) = τn(A)∨ τn(B)

τ1(¬A) = τ
n(A) τn(¬A) = τ1(A)

τ2(pi) = pi

τ2(p
⊥
i ) = ¬pi

τ2(A∧ B) = τ2(A)∧ τ2(B)

τ2(A∨ B) = ¬(¬τ2(A)∧ ¬τ2(B))

Given these translations the following is easy to verify.

�eorem 5.1. `1 and`2 are rendered syntactically equivalent by τ1 and τ2.
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If we regard syntactic equivalence as being sufficient for notational variance

then the above result tells us that these two logics are notational variants. What

we will now show, though, is that these two logics do not satisfy (External Equiv-

alence). To do this we will make use of amodified notion of a bisimulation, mod-

elled on ones used in Hennessy and Milner (1985) and Kurtonina and de Rijke

(1997), which preserves the modal extension ofL2.

In particular, let us consider the expansion of both L1 and L2 by the addi-

tion of a single unary modal operator 3 for possibility. Models for L3
1 are the

modal liftings of {∧,¬}-boolean valuations, which are easily seen to be equiva-

lent to standard possible worlds models. Models for for L3
2 are the modal lift-

ings of {∧,∨}-boolean valuations which are also Tait-Schütte valuations, which

are equivalent to standard possibleworldsmodelswhichmeet the constraint that

V(pi) =W \ V(p⊥i ). Let us call such models Tait-Schütte-models.

Definition 5.2. Suppose thatM = (M,R, V) and N = (N, S, V ′) are Tait-Schütte-
models, and letZ be a binary relation betweenM andN. �enZ is a directed diamond
simulation betweenM andN if it satisfies the following clauses:

• IfwZv then, for all propositional atoms pi and p⊥i , ifM |=w pi (M |=w p
⊥
i ) then

N |=v pi (N |=v p
⊥
i )

• IfwZv andRww ′ then ∃v ′ s.t. Svv ′ andw ′Zv ′.

Note thatwe could equally well have strengthened the first condition here to a

biconditional. �is weaker condition is used in Kurtonina and de Rijke (1997, p.2)

because they are concerned with languages which lack negation but which have

bothmodal operators. Of particular interest to us is the fact that only adding one

of the modal operators to a language which doesn’t have negation present as a

sentence forming operator leaves us with a language that is expressively weak.

�eorem 5.3. (Preservation) If there exists a directed diamond simulation Z betweenM
andN, andwZv then, for all formulasA inL3

2 , we have that

M |=w A⇒ N |=v A.

Proof. By induction on the complexity ofA.

Basis Case: If A = pi or A = p⊥i then this follows directly from the fact that a

directed diamond simulation preserves the values of propositional variables.

13



w0

w1 w1

w2

v0

v1

v2

Figure 1: �e Frames F1 and F2.

Inductive Step:

• Case 1:A = B∧C orA = B∨C. Suppose thatM |=w A∧B andwZv. �en

it follows thatM |=w A andM |=w B and so by the induction hypothesis

thatN |=v A andN |=v B and hence thatN |=v A ∧ B as desired. �e case

forA = B∨ C follows similarly.

• Case 2: A = 3B. Suppose thatM |=w 3B and wZv. �en for some w ′

s.t. Rww ′ we haveM |=w ′ B. So by the definition of a directed diamond

simulation we have that there is a v ′ ∈ N s.t. Svv ′ and w ′Zv ′. So by the

induction hypothesis it follows that N |=v ′ B and, as Svv
′
, that N |=v 3B,

as desired.

Whatwewill now show is that these two languages are not expressively equiv-

alent, using an example taken from Hennessy and Milner (1985, p.146). Con-

sider the frames F1 and F2 in Figure 1, and letM1 andM2 be the models where

V(pi) = ∅ (and soV(p⊥i ) =W). It is easy to show that the following two functions

are directed diamond simulations betweenM1 andM2.

• Z1 = {(w0, v0), (w1, v1), (w1, v1), (w2, v2)}

• Z2 = {(v0, w0), (v1, w1), (v2, w2)}

So it follows by the Preservation �eorem above that M1 and M2 verify the

same L3
2 -formulas. �ese two frames can be distinguished in L3

1 , though, as

3¬3¬(p ∧ ¬p) is true at w0 inM1 (as w1 is a dead end), while it is false at v0
inM2. It follows from this that `3

1 and `
3
2 are not expressively equivalent.

6
�us,

6
If theywere therewouldhave tobea formulaψ ∈ L3

2 which is true inallmodelswhichvalidate

3¬3¬(p ∧ ¬p). But any model on F1 validates this formula, and no model on F2 does. Now

14



by (Expressivity) we are able to use conclude that `3
1 and `

3
2 are not notational

variants. Finally, then, by (Modal Extension), it follows that `1 and `2 are also
not notational variants.

What is going on here? �e syntactic equivalence between `1 and `2 relies
on the fact that we are able to use the deMorgan equivalences to transform every

L1-formula into a corresponding L2-formula. In particular we can always push

negations inward, replacing connectives with their deMorgan duals, so that they

only have scope over propositional variables. By adding a newoperator to the lan-

guage of L2 without adding its de Morgan dual we end up with the extension of

`1 having more expressive power than the corresponding extension of `2. �ese

two languages do satisfy the much weaker condition that for every expansion of

L1 there is an expansionofL2 such that these expansions are expressively equiva-

lent (just add toL2whatever you add toL1 alongwith their deMorganduals). �e

fact that these two languages satisfy this weaker conditionwithout satisfying our

stronger (External Equivalence) points towards the fact that these two languages

are more than merely superficially different, with real work being done behind

the scenes.

Slight variations on this general pattern of argument can be used to show that

anumberofmodal languageswhichare expressively equivalent arenotnotational

variants. For example:

• �e modal logic S5 is expressively equivalent to S5 plus public announce-
ments van Ditmarsch et al. (2008, p.231), but S5 plus common knowledge
is not expressively equivalent to S5 with public announcements and com-
mon knowledge (the latter language being expressively stronger than the

former as shown on van Ditmarsch et al. (2008, p.232)). As a result, these

two logics are not notational variants.

• �e language ofmodal logic with an actuality operator (AML), and the lan-

guage of modal logic with indicatively marked and subjunctively marked

propositional variables (SML) are expressively equivalent, as shown in

Wehmeier (2004) and French (2013). As noted in French (2015), though,

these two languages are not expressively equivalent if we add a counterfac-

tual conditional to both languages, and so by (External Equivalence) these

two languages are not notational variants. As in the case of the Tait-Schütte

language L2 above, this is also because while AML is ‘monocosmic’, and

thus all occurrences of an actuality operator can be pushed inwards so that

they only have scope over propositional variables, this property is broken if

we add a standard counterfactual conditional to both languages.

consider the case where g(M) = M1 and g(M
′) = M2. We know that bothM1 andM2 must

agreeon the truthofψ, fromwhich it follows thatMandM ′mustagreeon the truthof3¬3¬(p∧

¬p). But these are both models on F1 and F2 respectively.
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In bothHumberstone (2004a) and French (2015, p.240f), picking up on a gen-

eral line of argument due to Smiley (1996), it is claimed that

it is not a good idea to argue against a more comprehensive language ...

and against a less comprehensive one, on the basis of an observation that

everything that can be said in the richer language has an equivalent in the

poorer, since if we work only with the poorer language, we can no longer

formulate the observation in question.Humberstone (2004a, p.49)

In the present case the ‘observation in question’ is the fact that,making use of

the de Morgan laws, we can push negations inwards so that they only have scope

over propositional variables. �e present results give another reason why this is

a bad idea—namely that it makes the equivalence of the less comprehensive lan-

guage (e.g. ourL2) with themore comprehensive one reliant on extrinsic features

of the expressive resources available in the language. In this case, for example, the

equivalence is reliant on every operator having a deMorgan dual in the language,

and so if we add an operator to both languages which is not its own de Morgan

dual then the two expanded languages will no longer be equivalent.

6 Tolerant Notational Variance
If we think that (External Equivalence) is a reasonable desiderata for two logics

beingnotational variants, then the results of theprevious sectionmakequite clear

that notational variance must be more demanding than mere syntactic equiv-

alence. One reasonable way of strengthening syntactic equivalence is to con-

sider definitional equivalence. Recalling that a translation is definitional if it is both
variable-fixed and compositional, let us say that two logics are definitionally equiv-
alent if they are rendered syntactically equivalent using definitional translations.
Understanding definitional equivalence as being sufficient for notational vari-

ance also gives us a nice story about the manner in which definitionally equiv-

alent logics come to the same thing, as when two logics are definitionally equiva-

lent they share a common definitional extension—this is in fact how the notion is

first characterised inWojcicki (1988, p.68). Concerning the notionWojcicki notes

that

[s]ince all properties of propositional calculi ... but those explicitly related

to their language are preserved under definitional extensions ... we shall

treat them as linguistic variants of one another. (Wojcicki, 1988, p.66)

�e properties Wojcicki had in mind were properties concerning the be-

haviour of the consequence relation, such as being closed under replacement of
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logical equivalents, or (as emphasised inCaleiro andGonçalves (2007)) having iso-

morphic lattices of theories. �ere is good reason, though, for thinking that no-

tational variants will satisfy reasonable explications of the (External Equivalence)

condition aswell. In particular let us take very seriously the idea that the common

definitional extension gives, to speak very figuratively, the logical reality under-

lying the logics which it is a common definitional extension of. �en in order to

uniformly extendapair of definitionally equivalent logics by the addition of anew

connective #, we can simply take a (conservative) extension of their common def-

initional extension and extend them so that they agree with their common defi-

nitional extension over their vocabulary extended by #.

More formally, let us restrict our attention to consequence relationswhich are

closed under replacement of logical equivalents. Say that ` ′ is a definitional ex-
tension of ` iff it is a conservative extension of `whose language extends that of
` by new operators #i, where for each new n-ary operator #i there is a formula
A constructed out of at most n-propositional variables in the language of ` s.t.
#i(p1, . . . , pn) a` ′ A(p1, . . . , pn). A consequence relation ` ′ is a common defi-
nitional extension of `1 and `2 iff its language contains precisely the connectives
of both `1 and `2 and it is a definitional extension of both. Suppose now that `1
and `2 are definitionally equivalent, and thus share a common definitional ex-
tension `3, and suppose further that we have a set of sequents S# containing a
new connective # in the language of L#3 and let `

S#
3 be the least conservative ex-

tension of `3 by the sequents in S# which is closed under replacement of logical
equivalents. Let `S#i be the reduct of `S3 to the language L#i. It is easy to see that
`S#i is a conservative extension of `i, and that `S#3 is a conservative extension of

`S#i . From this it follows trivially that `S#1 and `S#2 are definitionally equivalent.

Requiring definitional equivalence for notational variance already separates

out as genuinely distinct a wide range of logics. To give one example, Wojci-

cki proves that there can be no faithful definitional embedding of intuitionsitic

logic (`IL) into classical logic (`CL). To see this, recall that Intuitionistic logic has

infinitely many non-equivalent formulas in its single-variable fragment, while

classical logic has only finitely many such formulas. By the pigeonhole principle,

then, any putative translation τ from intuitionistic logic into classical logic must

fail to be faithful, as there will be formulas Ai and Aj for which we do not have

Ai a`IL Aj but for which we have τ(Ai) a`CL τ(Aj), as any definitional transla-

tion will translate a formula with a single variable in one language into a formula

in a single variable in the other.

Relatedly, in Meyer (1974, p.226–228) it is shown that no system of relevant

entailment can be faithfully embedded into any system of modal logic by a defi-

nitional translationwhich translates relevant implication in terms of amodalised

truth-function. While this does not show that there is no translation of such sys-
tems available, it is definitely indicative of such. A similar argument to that above
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does tell us that the implicational fragment of the relevant logic R is not the strict
implicational fragment of the modal logic S4, as it is shown in Meyer (1970) that
R has 6 equivalence-classes of formulas in its single-variable fragment, while the
strict implicational fragment of S4 has 9, as shown in Byrd (1976). As such there
can be no faithful definitional translation from the implicational fragment of S4
into the relevant logic R.

As an account of notational variance, definitional equivalence seems to bring

with it a number of desirable properties, while being a more permissive notion

that strict notational variance. Let us say, then, that two logics are tolerant nota-
tional variants iff they are definitionally equivalent. �e results of the previous two

sections, then, can be seen as arguing in favour of thinking of tolerant notational

variance as being the correct account of notational variance, given the require-

ment of (External Equivalence).

7 Conclusions&Consequences
Let us take stock. �ere are a variety of different kinds of notational variance

which one can extract from the few places where the notion is discussed in the

literature. Which notion of notational variance we ought to concern ourselves

with depends on what we want a notion of notational variance to tell us. Con-

cerns with mere typographical difference between languages pushes us towards

working with strict notational variance, while attempting to accord with the in-

tuition that truth-functionally-complete fragments of classical logic are all mere

notational variants pushes us towardsworkingwith tolerant notational variance.

Moreover, isolating tolerant notational variance, and in particular the (Exter-

nal Equivalence) condition, sheds some light on other general discussions where

notions in the vicinity of notational variancehavebeendeployed in thephilosoph-

ical literature. For example, if verbal disagreement between proponents of differ-

ent formal/logical theories requires that the theories in question be notational

variants (which is implicitly suggested in Williamson (2013, p.368)) then many

disputes in the literature which have been taken to be merely verbal are in fact

clearly substantive because the languages in question fail to be externally equiv-

alent.

• First-order necessitist and contingentist (or actualist and possibilist) lan-

guages are expressively equivalent, as noted in Williamson (2013), but fail

tobeexpressively equivalentwhen, for example, generalisedquantifiers are

added to both languages, as shown in Fritz (2013, p.657).

• Nihilist andUniversalistmereological languages are prima facie notational

variants,Warren (2015, pp.428–252) showing that the logical theoriesmost
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obviously corresponding to these two metaphysical theories are relatively

interpretable. As Warren notes, though, this equivalence result breaks

down if the resources of plural quantification are added to both languages

(with no effect in the case of the nihilist language, as it already has plural

quantifiers). As a result, nihilist and universalist mereological languages

are not externally equivalent, and thus fail to be notational variants.

Much like the Schütte language we described above, these languages are equiv-

alent if we allow for non-uniform addition of expressive resources. �is seems

to suggest that there is some kind of substantive (or at least non-notational) dif-

ference between the languages in question, but might be taken to merely count

against the requirement that verbal disputes require notational variance. Even if

this is the case, paying attention to the various variations on notational variance

can shed light on a variety of disputes in philosophical logic, broadly construed.
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