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1 Introduction
It is well known that naive theories of truth based on the three-valued schemes K3
and LP are non-trivial. �is is shown by the fixed-point model construction of Kripke
(1975). Kremer (1988) presents sequent systems for some fixed-point theories of truth,
proves a completeness result, and provides an inferentialist interpretation of these
systems. Kremer’s model constructions show that the systems are non-trivial. Yet,
there has been little work done to obtain a proof-theoretic explanation for why these
systems are non-trivial, whereas a similar classical system is trivial.

Ourgoal is togain some insight intowhy systems likeK3andLP are,whenendowed
with a truth predicate and enough syntactic machinery to get us into trouble, non-
trivial by examining how to prove this in a purely proof-theoretic manner—attending
to sequent calculi formulations of the two systems. For the sake of simplicity we focus
on K3 for the bulk of the paper; the considerations for LP are largely dual. We begin
with the basic sequent system and some results and problems in §2. �ese problems
motivate a different sequent formulation in §3, which we show to be non-trivial. We
then close in §4 with directions for future work.

2 OpeningMoves
�ekind of the sequent calculus we have inmind is found in figure 1. �roughout,±A
stands forA or ¬A, depending on whether the sign is+ or−. We note that to obtain
a sequent calculus for LP, one would replace the axiom [K3]with [LP].

Γ � ∆, p,¬p
[LP]

We will focus on the quantifier-free fragment that includes no variables and no
function symbols. �ere are two reasons. First, the addition of quantifiers changes
little with respect to the question with which we are concerned, namely why are cer-
tain naive truth theories non-trivial. �ere is little interaction between the quantifiers
and the syntactic theory that we will adopt, namely quotation names. Quantifiers will
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Γ,±p �±p,∆
[Id]

Γ, p,¬p � ∆
[K3]

Γ � ∆,A Γ,A � ∆
Γ � ∆

[Cut]

Γ,A � ∆
Γ,¬¬A � ∆

[DNL]
Γ �A,∆
Γ � ¬¬A,∆

[DNR]

ΓA, B � ∆
Γ,A∧ B � ∆

[∧L]
Γ �A,∆ Γ � B,∆
Γ �A∧ B,∆

[∧R]

Γ,¬A � ∆ Γ,¬B � ∆
Γ,¬(A∧ B) � ∆

[¬∧L]
Γ � ¬A,¬B,∆

Γ � ¬(A∧ B), ∆
[¬∧R]

Γ,A � ∆
Γ, T〈A〉 � ∆

[TL]
Γ � ∆,A
Γ � ∆, T〈A〉

[TR]

Γ,¬A � ∆
Γ,¬T〈A〉 � ∆

[¬TL]
Γ � ∆,¬A
Γ � ∆,¬T〈A〉

[¬TR]

Figure 1: A Sequent Calculus for K3

be more involved with a more complex syntactic theory, such as classical Peano arith-
metic, and further issues will be raised there, such asω-consistency. �e second rea-
son is that quantifiers bring some additional complexity that we think detracts from
the overall aim of this project, getting a proof-theoretic grip on non-triviality. We ex-
pect that the arguments that we develop can be adapted to include quantifiers with
standard rules.

Proposition 1. Suppose that the sequent �∆ is provable in the above sequent calculus. �en
there are some formulas∆ ′, where each formulaA ∈ ∆ ′ is a subformula or anegated subformula
of a formula in∆ such that�∆ ′.

Proof. By inductionon the constructionof derivations, noting that (i) eachof the right-
rules have the feature in question, and (ii) that there are no rules whichmove formulas
from the antecedant to the succedent of sequents.

For the moment, we will say that a system is trivial if the sequent ∅ � ∅ is deriv-
able. Since the systems under consideration will have admissible weakening rules, all
sequents will be derivable in a trivial proof system. A system is non-trivial just in case
it is not trivial.

�eorem 2. �e above system is non-trivial.

Proof. Suppose that we can derive ∅ � ∅. By inspection of the above rules it is easy to
see that it must be that the final rule in such a derivation was [Cut], whichmeans that
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we have, for some A, (i) A�, and (ii) �A. By the above Proposition and (ii) it follows
that we have some instance of one of our initial sequents of the form

�A1, . . . , An

for some formulasA1, . . . , An. �is is impossible, though, so there is no such deriva-
tion.

�e basic idea of the consistency proof is simple. In order for ∅ � ∅ to be derivable,
we need the sequents ∅�A andA� ∅ to be derivable. �e sequents are unbalanced, in
the sense that they each have an empty side. Either the antecedents or the succedents
have been cleared out. If one can show that one cannot derive sequents that are unbal-
anced on each side, then non-triviality follows. A similar argument can be run for LP,
changing∆ and∆ ′ to be in antecedent, rather than succedent position in Proposition
1 and adjusting the argument in the proof of�eorem 2 accordingly.

�e system, as it stands, does not incorporate any syntactic theory. As a result,
equivalences, suchasa liarTabeingequivalent to¬Ta, or even theweaker co-entailments,
are not derivable. For the syntactic theory, wewill use quotationnames.1Westartwith
a classical base language L and extend it to a language, L+ with truth and quotation
names, 〈A〉, for each sentenceA. �e names and formulas of L+ are defined by simul-
taneous induction, so that T〈Fb〉 is a formula, as is T〈T〈Gc〉〉. �e use of quotation
names does not force there to be, for example, liar sentences in the language, although
we will assume there are such. To use the syntactic theory, we require that there are
new axioms or rules in the language for quotation names and identity. �e rules we
would like to add are in figure 2.2 �ese rules, however, will encounter serious diffi-
culties that will lead us to proceed in a different direction.

〈A〉 6= 〈B〉, Γ � ∆
Γ � ∆

[QNL]
Γ � ∆, 〈A〉 = 〈B〉

Γ � ∆
[QNR]

In [QNR] and [QNL],A 6= B.

Γ, s = t,A(t), A(s) � ∆
Γ, s = t,A(t) � ∆

[=L1]
Γ, s = t � ∆,A(t), A(s)
Γ, s = t,�∆,A(t)

[=L2]

Γ,A(t), A(s) � ∆, s 6= t
Γ,A(t) � ∆, s 6= t

[ 6=R1]
Γ � ∆,A(t), A(s), s 6= t
Γ,�∆,A(t), s 6= t

[ 6=R2]

a = a, Γ � ∆
Γ � ∆

[=Ref]
Γ � ∆, a 6= a
Γ � ∆

[ 6=Ref]

Figure 2: Identity and quotation name rules for K3

Identity is not treated partially, as truth is. �e classical treatment of identity ex-
tends to identities between terms not in the base language. More generally, we also

1See Gupta (1982), Kremer (1988), or Ripley (2012).
2�ese two rules are based on those from Kremer (1988) and fromNegri and von Plato (2001).
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want to consider languages that have predicates in addition to the truth predicate and
identity. �ese base language expressions, including identity, are, in the K3T theory,
treated classically. To accommodate them in the sequent calculus, we can add the fol-
lowing axioms, where p is a T-free atom.3

Γ � p,¬p,∆
[Cl]

An alternative, which we will not adopt, is to use the following rule.

Γ, p � ∆ Γ,¬p � ∆
Γ � ∆

[Cl]

Let us call the system with the axiom [Cl] and the rules above K3TL=, where L is the
classical base language. �e addition of [Cl] adds another way to obtain derivable se-
quents of the form�A1, . . . , An. �is, alongwith the identity rules that delete formu-
las raise problems for extending the balance argument in �eorem 2 to work for the
extended system.

With identity in the system, the definition of triviality has to be modified, since
it may be the case, for example, that while ∅ � ∅ isn’t derivable, a = 〈¬Ta〉 � ∅ is.4
A more general definition of triviality is needed. A system is trivial, in the extended
sense, if Γ0 � ∆0 is derivable, where Γ0 is a multiset of equalities, ∆0 is a multiset of
inequalities, and at least one contains a formula with a quotation name on one side
and a non-quotation name on the other. Apart from the new definition of triviality,
the addition of the identity rules requiresmodifying the non-triviality proof, since se-
quents of the form �A1, . . . , An are now derivable. Apart from the preceding issue,
the balance argument does not seem to guarantee that the system isn’t trivial in the
extended sense. While it guarantees that both sides do not end up empty, it does not
appear to guarantee non-triviality in the extended sense.

Wewould like toprove the systemK3TL= non-trivial, but theproof-theoreticmeth-
ods for doing so run into difficulties. We have not seen these pointed out before, so we
will briefly indicate some of the hurdles. One way to prove the non-triviality ofK3TL=
would be to give a cut elimination argument. For a sequent calculus with the struc-
tural rules of contraction and weakening absorbed, a common route to eliminating
cuts proceeds via a few lemmas, including the inversion lemma showing that all the rules
are invertible, which says, roughly, that if a derivable sequent could be the conclusion
of a rule, then the premiss of that rule is also derivable.5 In particular, it would require
that if T〈A〉, Γ �∆ is derivable inn steps, thenA, Γ �∆ is also derivable inn steps. Our
diagnosis of the problem arises is the following: atoms using the truth predicate can
occur as the conclusions of rules and as atoms in axioms. Inversion requires that for
arbitraryA, Γ,A � T〈A〉, ∆ be derivable in 1 step, since Γ, T〈A〉 � T〈A〉, ∆ is. But, that
is not generally the case.

Onemight try to force the inversion lemma, by adding as an axiom Γ,A� T〈A〉, ∆,
but this, in turn, would require that an arbitraryA could be inverted. For example, if

3�e appropriate [Cl] axiom for LP would be Γ,p,¬p �∆.
4�is problemwas pointed out by Kremer (1988).
5Negri and von Plato (2001, 32)
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A isB∨C, then Γ, B� T〈A〉, ∆ and Γ, C� T〈A〉, ∆would have to be axioms. It appears,
then, that obtaining the inversion lemma for these rules would require the addition
of a rule with no premises that allows one to infer any derivable sequent. While that
would make derivations shorter, it would not be insightful, even if the rest of the ar-
gument for the cut elimination theoremworked.

�ere is one additional hurdle for giving a direct cut elimination argument that
we will highlight, as it is important for the approach adopted in the next section. In
this style of sequent system, there is usually only an identity substitution rule on the
left, in our case the [= L1] and [ 6= R1] rules. Substitution on the right is achieved
indirectly, starting with the desired term in a formula on the right, e.g. Fb and then
proceeding to replace it on the left by means of the rule to obtain, e.g. a = b, Fa �
Fb. �is appears, however, to be inadequate in the case of truth as the truth rules can
introduce distinguished terms, namely quotation names, in either the antecedent or
succedent. None of the other rules introduce terms that are new to the proof. �e use
of identity substitution rules on the right, as well as the left, creates the same sort of
trouble for the elimination proof that truth case did above. �ere appears, then, not to
be anyway to obtain a = 〈Fb〉, Fb� Tawithout using cut, as the truth rule would yield
T〈Fb〉 in the succedent, requiring the use of a term substitution. We will, then, move
to a different setting for proving non-triviality.

3 Sequent systemswith annotations
Wewill use an alternative sequent system to deal with some of the indicated issues re-
lated to truth and quotation names. Specifically, we will use amodified form ofK3TL,
without identity rules and without identity in the object language. Suppose one is
given a language L+. Let a syntax set E for L+ be a set of identities, each of which is
of one of the following three forms: 〈A〉 = 〈B〉, a = 〈B〉, or b = c, where a, b, c are
names that are not quotation names.6 An identity set E is a syntax set obeying the fol-
lowing closure conditions:

1. for all sentencesA, 〈A〉 = 〈A〉 is in E ,

2. if s = t is in E , then t = s is in E , and

3. if s = t and t = u are in E , then s = u is in E .

Finally, an annotation set E is an identity set not containing 〈A〉 = 〈B〉, whereA and B
are distinct formulas. Given an annotation set E , say that two terms, s, t, appearing
in identities in E are equivalent in E just in case s = t is in E . We will consider the
proof systems K3TLE , for each E . So, a given proof will have a particular annotation
set E that affects its rules.

Taking the interpretations of the identities in an annotation set E to be fixed to a
standard interpretation, then, E contains the syntactic information of L+. A particu-
lar ground model for L+ may interpret the non-quotation names, and names outside
of E differently, as well as the predicates, but that is fine, since we are only interested

6Note that we are assuming there are no function symbols in the language.
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in the syntactic theory, as captured by E . From an inferentialist point of view, the use
of the annotation sets presents no philosophical problems.

Rather than usemultisets, the systemsK3TLE will use sequences on either side of
the turnstile. �e sequences Γ, ∆ arepermitted to be empty. Wealso addapermutation
rule for both sides, althoughwewill generally suppress it in what follows. �e purpose
of the switch from multisets to sequences is to facilitate the definition of a trace and
an ancestor, which are used for the proof of the elimination theorem.

�e next definition is used to integrate E into the proof system. Say that two for-
mulasA andB are equivalent in E just in case there are sequences of terms c1, . . . , cn,
and d1, . . . , dn, not occurring in quotation names in A, such that B can be obtained
from A by replacing one or more occurrences of ci in A with di, where for each i, ci
and di are equivalent in E .

�eaxioms, [Id] and [K3], are generalized to include the following instances,where
±p is of the form±Tb. In [K3], the antecedent formulas may be in any order.

Γ,±Tb, Σ �Θ,±Tc, ∆
[Id]

Γ, Tb,¬Tc, Σ � ∆
[K3]

In these axioms,b and cmust be equivalent inE . �eaxiom formof [Cl]does not need
to be changed.

�e truth rules are similarly modified.

Γ,A, Σ � ∆
Γ, Tb, Σ � ∆

[TL]
Γ � ∆,A, Σ
Γ � ∆, Tb, Σ

[TR]

Γ,¬A,Σ � ∆
Γ,¬Tb, Σ � ∆

[¬TL]
Γ � ∆,¬A,Σ
Γ � ∆,¬Tb, Σ

[¬TR]

In these rules, b and 〈A〉must be equivalent in E .
We add the following rules to K3TLE .

Γ,A,A, Σ � ∆
Γ,A, Σ � ∆

[WL]
Γ � ∆,A,A, Σ
Γ � ∆,A, Σ

[WR]

Γ,A, B, Σ � ∆
Γ, B,A, Σ � ∆

[CL]
Γ � ∆,A, B, Σ
Γ � ∆,B,A, Σ

[CR]

Finally, K3TLE does not take the rule [Cut] as primitive, although, as we will show,
this does not affect what sequents are provable.

Anupshot of internalizing the syntactic theory, in themanner thatwehavedone, is
that it permits us to return to the simple definition of triviality, namely the derivability
of ∅ � ∅. �e reason that we had to move to a more complicated definition of triviality
in §2 was that we wanted to permit the use of syntactic resources in the derivation of
triviality, as the syntactic resources, in a sense, come for free. �e use of any syntactic
resources, however, would preclude the derivation of ∅ � ∅. Since we no longer record
appeal to syntactic resources with identities and negations of identities in sequents,
the complications are no longer needed.

We will state two lemmas concerning equivalence in E , to be used later.

Lemma3. IfAandA ′ are equivalent inE andBandB ′ are equivalent inE , then the following
are equivalent in E .
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• ¬A and¬A ′

• A∧ B andA ′ ∧ B ′

• ¬(A∧ B) and¬(A ′ ∧ B ′)

Proof. �is is proved by induction on the complexity ofA and B.

It is not the case that if A and B are equivalent in E then T〈A〉 and T〈B〉 will be.
�is is because A and B may be distinct sentences, in which case, one will not have
〈A〉 = 〈B〉 inE . �is is, however, as it should be. We can say something about relations
between formulas equivalent in E .

Lemma 4. SupposeA andA ′ are equivalent in E . �en, if Γ � ∆,A, Σ is derivable, then Γ �
∆,A ′, Σ is derivable, and ifΓ,A, Σ�∆ is derivable, thenΓ,A ′, Σ�∆ is derivable. Furthermore, if
the original sequentwas derivable inn steps, then the new sequent is derivable in atmostn steps.

Proof. �eproof is by induction on the construction of the proof. IfA is principle in an
axiom, then the result of replacing A with A ′ in the axiom will still be an axiom, and
similarly ifA is parametric.

�e structural rules are taken care of by the induction hypothesis. We will present
[WL], [WR] being similar. Suppose Γ,A,A, Σ�∆ is derivable. By the inductive hypoth-
esis, then Γ,A ′, A ′, Σ�∆ is derivable. By [WL], Γ,A ′, Σ�∆ is derivable. �e connective
rules are immediate from the induction hypothesis.

Let us look at the truth rules. IfA is principle in one of the truth rules, then it is of
the form±Tb. SinceA ′ is equivalent in E , thenA ′ is of the form±Tc and c and b are
equivalent in E . It follows that the sequent replacingAwithA ′ is also a conclusion of
a truth rule.

�e contraction rule we use does not permit contraction across formulas equiva-
lent in E . �is is, however, shown to be admissible by the previous proof.

Corollary 5. Fix E and letA andA ′ be equivalent in E . If Γ,A,A ′, Σ � ∆ is derivable, then
so is Γ,A, Σ � ∆. If Γ � ∆,A,A ′, Σ is derivable, then so is Γ � ∆,A, Σ.

�e form the cut rule that we will show is admissible is the following.

Γ � ∆,M,Ξ Φ,M ′, Σ �Θ
Φ, Γ, Σ � ∆,Θ, Ξ

[Cut]

In this rule,M andM ′must be equivalent in E . In light of lemma 3, we could require
thatM is identical toM ′, but we will not do so here.

We need to define the notions of being parametric in a rule and parametric an-
cestor. We use the definitions of Bimbó (2014, 34-35) modified in the obvious way for
our rules, which for reasons of space we will leave slightly informal here. �e non-
displayed formulas in the axioms are parametric in the axioms. In the connective and
structural rules, the non-displayed formulas are parametric. A formula occurrenceA
in the premiss of a rule is a parametric ancestor of a formula occurrenceB in the conclu-
sion of that rule iff they are related by the transitive closure of the following relation:
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Both are occurrences of the same formula and either (i) they are both parametric in
the rule and occur in the same position, (ii) they are displayed in [CL] or [CR] and not
in the same position, or (iii) they are displayed in [WL] or [WR]. Note that in some
rules, such as [¬ ∧ L] and [WR], formulas in the conclusion can have more than one
parametric ancestor in the premises, e.g. each formula in Γ in [¬ ∧ L] andA in [WR].
�e contraction count of a formula occurrence is the number of applications of [WL] or
[WR] in which one of its parametric ancestors is displayed. �e contraction count of
an application of cut is the sumof the contraction counts of the two occurrences of the
cut formula.

Define the trace tree of an occurrence of a formula as follows. IfA is parametric in
an inference, then A’s trace is extended with a branch containing the corresponding
occurrence of A in the premises. If A is principle in a ¬ rule, so is of the form ¬¬B,
then its trace tree is extended with a branch containingB. IfA is principle in a∧ rule,
then it is of the form B ∧ C and its trace tree is extended with a branch containing B
and one containing C. If A is principle in a ¬∧ rule, then it is of the form ¬(B ∧ C)

and its trace tree is extended with a branch containing ¬B and one containing ¬C. If
A is principle in a truth rule, then it is of the form Tb, and its trace is the displayed B
in the premiss. �e negated truth rules are similar. If A is principle in a contraction
rule, then its trace tree is extended with a branch containing one occurrence ofA and
one containing the other.

Define the trace weight t(A) of an occurrence of a formulaA as the number of truth
rules featuring nodes of A’s trace tree as principle in their conclusions. Define the
grade g(A) ofA as the number of logical connectives appearing inA outside the scope
of quotation names. Define the complexity of a cut as being ω · (t(M) + t(M ′)) +

g(M), whereM andM ′ are, respectively, the occurrences ofM andM ′ displayed in
the left and right premises of [Cut]. �e rank of the cut is defined as the sum of the
left rank, which is the number of steps in which a parametric ancestor ofM occurs in
the succedent of the left premiss, plus the right rank, which is the number of steps in
which a parametric ancestor ofM ′ occurs in the antecedent of the right premiss. We
will followBimbó’s triple induction proof technique,modified in the indicatedways to
account for the differing rules.7

Proposition 6. Let E be an annotation set. If Γ � ∆,M,Ξ andΦ,M ′, Σ � Θ are derivable,
whereM,M ′ are equivalent in E , thenΦ, Γ, Σ � ∆,Θ, Ξ is derivable without cut.

Proof. It is sufficient to show that uppermost cuts can be eliminated fromderivations.
�e proof proceeds by triple induction on the cut complexity, rank, and contraction
count. �e left rank is lowered, and then the right rank is lowered, then the complexity
is lowered, lowering the contraction count as needed. As usual, we can break the cases
into groups, depending on the rank of the left cut premiss and the rank of the right cut
premiss. Wewill present a selection of the cases, generally presenting instanceswhere
the cuts are simpler than the general case due to the ordering of formulas.

We will start with the cases in which both cut premises come via axioms.
Case: Bothpremises are from [Id]. �is splits into subcases, dependingonwhether

either cut formula is parametric in the axiom. In the case in which both cut formulas
7See Bimbó (2014, 36-15) for details.
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are principle, wemay have one premiss as Γ, Ta� Tb,∆ and the other asΣ, Tc� Td,Θ.
Since we know that the following pairs are equivalent in E , 〈a, b〉, 〈c, d〉, and 〈b, c〉, it
follows thata andd are equivalent inE . �ismeans that the sequent Γ, Σ, Ta�Td,∆,Θ
is an axiom.

�e case in which one premiss comes from [K3] and one from [Cl] is straightfor-
ward. Similarly, the case inwhich one comes from [Id] and one from either [K3] or [Cl]
is straightforward.

�e permutation cases are taken care of by the induction hypothesis on rank.
Case: �e left premiss comes via [WR]. �is breaks into subcases depending on the

complexity of the cut formula. Here we will assume that it is greater than 1. �e proof
then looks like the following.

Γ � ∆,M,M ′
Γ � ∆,M M ′′, Σ �Θ

Γ, Σ � ∆,Θ

SinceM andM ′ are equivalent in E , as areM andM ′′, it follows thatM ′ andM ′′ are.
We can then permute the cut upwards as follows.

Γ � ∆,M,M ′ M ′′, Σ �Θ
Γ, Σ � ∆,Θ,M M ′′, Σ �Θ

Γ, Σ, Σ � ∆,Θ,Θ

�e new cuts can be eliminated by the induction hypothesis on the contraction count.
�e desired endsequent can then be obtained by repeated use of contraction and per-
mutation rules.

�e other cases involving [WL] and [WR] are similar.
�e cases in which one or both cut formulas are parametric in their respective in-

ferences are handled by the usual induction hypothesis on rank.
Wewill do a few cases in which both cut formulas are principle in their inferences.
Case: [∧]. Both cut formulas are principle, so the proof looks like the following.

Γ � ∆,A Γ � ∆,B
Γ � ∆,A∧ B

A ′, B ′, Σ �Θ
A ′ ∧ B ′, Σ �Θ

Γ, Σ � ∆,Θ

In this proof,A andA ′, as well as B and B ′, are, respectively, equivalent in E .
�is is transformed into the following.

Γ � ∆,B
Γ � ∆,A A ′, B ′, Σ �Θ

B ′, Γ, Σ � ∆,Θ
Γ, Γ, Σ � ∆,∆,Θ

�enew cuts can be eliminated using the induction hypothesis on complexity. �e de-
siredendsequent can thenbeobtainedby repeateduseof contractionandpermutation
rules.

�e [¬∧] and double negation cases are similar.
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Case: [T ]. �e proof ends with the following.

Γ � ∆,A
Γ � ∆, Tb

A, Σ �Θ
Tc, Σ �Θ

Γ, Σ � ∆,Θ

In this proof, b and c are equivalent in E .
�is can be transformed into the following.

Γ � ∆,A A,Σ �Θ
Γ, Σ � ∆,Θ

�e new cut can be eliminated by appeal to the induction hypothesis on complexity,
since the trace weight of the cut formula has been reduced.

Case: [¬T ]. �e proof ends with the following.

Γ � ∆,¬A
Γ � ∆,¬Tb

¬A,Σ �Θ
¬Tc, Σ �Θ

Γ, Σ � ∆,Θ

In this proof, b and c are equivalent in E .
�is can be transformed into the following.

Γ � ∆,¬A ¬A,Σ �Θ
Γ, Σ � ∆,Θ

�e new cut can be eliminated by appeal to the induction hypothesis on complexity,
since the trace weight of the cut formula has been reduced.

Finally, we observe that in no case did the trace weight of a cut formula increase
from the original cut to the new cuts in the transformed proof.

Since this proof system is somewhat non-standard, we will demonstrate its ade-
quacy by showing that it is equivalent to a fragment of the sequent system for Strong
Kleene truth fromKremer (1988). Rather than giveKremer’s rules, wewill use the rules
fromK3TL=, with restrictions that wewill indicate. �ese rules are admissible in Kre-
mer’s system. �e fragment in which we will be interested here is the quantifier-free
fragment without identity axioms and whose identity rules are restricted to operate
only on literals using the truth predicate. Further, the proofs are required to be syntax
consistent, in the sense that for a given derivation, the equalities on the left and nega-
tions of equalities on the right of the end sequent do not imply, using classical equa-
tional logic, 〈A〉 = 〈B〉, for any distinct formulas A and B.8 Call this fragment KR.
For a given E and an instance of a truth rule whose displayed premiss formula is ±A
and whose conclusion is±Tb, say that a set of identities Ξ underwrites the application
of the rule just in case Ξ contains the identity 〈A〉 = b. Say that a set of identities
underwrites a truth axiom of one of the followings forms,

8Syntax consistency says, roughly, that the set of equalities on the left and negations of equalities on the
right can be extended to an annotation set.
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Γ,±Ts � ∆
Γ, t = s,±Tt � ∆

[=L1]
Γ � ∆,±Ts

Γ, t = s,�∆,±Tt
[=L2]

Γ,±Ts � ∆
Γ, s = t,±Tt � ∆

[=L3]
Γ � ∆,±Ts

Γ, s = t,�∆,±Tt
[=L4]

Γ,±Ts � ∆
Γ,±Tt � ∆, t 6= s

[ 6=R1] Γ � ∆,±Ts
Γ � ∆,±Tt, t 6= s

[ 6=R2]

Γ,±Ts � ∆
Γ,±Tt � ∆, s 6= t

[ 6=R3] Γ � ∆,±Ts
Γ � ∆,±Tt, s 6= t

[ 6=R4]

Γ,A � ∆
Γ, T〈A〉 � ∆

[TL]
Γ � ∆,A
Γ � ∆, T〈A〉

[TR]

Γ,¬A � ∆
Γ,¬T〈A〉 � ∆

[¬TL]
Γ � ∆,¬A
Γ � ∆,¬T〈A〉

[¬TR]

Figure 3: Identity and truth rules in KR

• Γ,±Tb, Σ � ∆,±Tc,Θ, or

• Γ, Tb,¬Tc, Σ � ∆,

just in case Ξ contains b = c. A set of identities Ξ underwrites a proof just in case Ξ
underwrites each truth rule and truth axiom in the proof.

�e axioms in KR can be used for arbitrary formulas, rather than being restricted
to atoms. �is is not a problem, since K3TLE allows one to prove that the axioms hold
for arbitrary formulas.

Lemma 7. �e axioms [Id] and [K3] are derivable with an arbitrary formula A replacing p.
�e axioms [Cl] are derivable with an arbitrary T -free formulaB replacing p.

�e proof is by induction on the construction of A, or B. �e proof is routine, so
we omit it.

With that lemma in hand, we can now state the equivalence between the systems.

�eorem 8. 1. LetΠ be aK3TLE derivation of Γ �∆. �en there is a derivation of Γ, Ξ�∆
inKR, whereΞ is a set of identities that underwrites each truth rule and truth axiom used
inΠ.

2. LetΠ be a proof of Γ, Σ ` ∆,Θ inKR, whereΣ is a set of identities introduced via identity
rules and Θ is a set of negated identities introduced via identity rules. �en Γ ` Θ is
derivable inK3TLE, providedE containsΣ ∪Θ∗, whereΘ∗ = {s = t : s 6= t ∈ Θ}.

For reasons of space, we will sketch the proof. For 1, one translates a proof Π of
Γ �∆ inK3TLE into a proofΠ ′ inKR. We briefly describe some of the cases. Whenever
a truth rule is used inΠ, a truth rule is used inΠ ′, followed by an appropriate identity
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rule if the principal formula in the rule in Π was of the form±Ta rather than±T〈A〉.
�ese additional identities make up Ξ.

For 2, one translates a proofΠ ′ of Γ, Σ�∆,Θ into a proofΠ of Γ �∆ inK3TLE. �e
important cases for this proof are the identity cases. �ese are taken care of by global
transformations on trace trees inΠ.

Wewill note that the theorem, and proof, carry over to LP, using Kremer’s sequent
calculus for LP.

�erestriction inKR touse identity rulesonlyon literalsusing the truthpredicate is
to facilitate the proof of theorem8, and it is not a great restriction. Nothing additional
is provable if the identity rules are allowed to substitute into truth atoms in complex
formulas.

Proposition 9. LetA be a formula with at least one occurrence of Ta and letA ′ beAwith one
or more occurrences of Ta replaced by Tb. �e rules

Γ,A � ∆
a = b, Γ,A ′ � ∆

[=L]
Γ,A � ∆

b = a, Γ,A ′ � ∆
[=L]

Γ,A � ∆
Γ,A ′ � ∆, a 6= b

[ 6=R] Γ,A � ∆
Γ,A ′ � ∆, b 6= a

[ 6=R]

are admissible inKR.

�e proof is by induction on the construction of A. It is straightforward, so we
omit it. We will turn to the conclusion.

4 Conclusion
Webeganwith theaimofprovidingsomeproof-theoretic explanationofwhy thefixed-
point theories of truth based onK3 and LP are non-trivial. Focusing onK3, we proved
that a very basic system, one with no additional syntactic theory, is non-trivial by a
balancing argument. �e argument extends to LP. Enriching this systemwith amod-
est syntactic theory and identity, leads to difficulties showing that cut is eliminable.
Indeed, the enrichment requires a more complicated definition of triviality. We pro-
posed non-standard systems that internalize the syntactic theory in the annotation
sets and their effect on the truth rules. A cut elimination argument can be carried out
for those systems, showing that the systems are non-trivial in the original sense that
∅ � ∅ is not derivable. Finally, we showed that the systems are intertranslatable with
fragments of Kremer’s system.

�ere is still work to be done. It would be good to obtain a completeness result of
some kind for the systems with annotation sets. We also hope to generalize the initial
balancing argument toworkmore broadly. But, we havemade some progress towards
our initial goal of getting a proof-theoretic justification for the non-triviality of naive
truth in K3 and LP.
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