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Summary

Often when we do philosophy we want to define less well understood no-
tions with which we are concerned in terms of those which we have a
much firmer grasp on. Hence, to take a classical example, we often try
to define knowledge in terms of belief (and some auxiliary notions such
as truth, justification and so on). Such definitions give rise to translations,
functions which map the terms to be explained to their intended (simpler)
explanation, and it is these which are our objects of study.

In particular we will be focused on providing a systematic study of
the formal uses of translations between logics, and what they can tell us
about the logics involved. Our focus will be on propositional modal logics,
both for reasons of explanatory simplicity, and also as modal logic remains
one of the best formal tools we have for explicating a wide variety of live
philosophical problems.
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I

Introduction

In this thesis we will be considering translations between logics – these be-
ing functions which map formulas in the language of one logic (the source
logic) to formulas in the language of the other (the target logic). Trans-
lations are a very useful tool for studying the interrelationships between
different logics, as well as for the proper explication, and occasionally so-
lution, of some philosophical problems. Consider the following example
from the philosophy of mathematics. If mathematical intuitionism were
correct one might have suspected that ‘illegitimate’ use of the principle of
excluded middle, and other classically valid but intuitionistically invalid
principles of reasoning, would have rendered some of our mathematical
results incorrect, if not inconsistent – in the same way what treating prin-
ciples such as affirming the consequent as valid principles of reasoning
can lead to inconsistency. But it appears as if the use of the principle of
excluded middle in mathematics has not led us astray, and so the mathe-
matical intuitionist might be led to wonder what exactly is going on here.
In the 1920’s Andrei Kolmogorov addressed this problem, showing why

1



2 CHAPTER 1. INTRODUCTION

the use of the principle of excluded middle in mathematical reasoning
“has not yet led to contradictions and also why the very illegitimacy has
often gone unnoticed” [van Heijenoort 1967, p.416]. To do this what Kol-
mogorov showed was that we could translate classical logic into intuition-
istic logic, and thus any classical reasoning can be transformed – using the
translation in question – into reasoning which is intuitionistically accept-
able. We will not address here how successful Kolmorogov’s response to
this problem is, merely mentioning it as an example of where translations
can be used (at least potentially) to solve philosophical problems.

In this thesis we will be concerned with giving a systematic study of the
formal uses of translations and what they can tell us about different log-
ics. In particular we will be concerned with translations between modal
logics, both for reasons of explanatory simplicity and also because, in the
author’s opinion, modal logic remains one of the best formal tools we have
for properly explicating a wide variety of live philosophical problems.

In Chapter 2 we will give a taxonomy of translations based on a series
of properties of translations which have appeared in other studies of trans-
lations – notably Prawitz & Malmnäs [1968] and Wójcicki [1988]. The idea
behind our taxonomy is to try to properly characterize the variety of trans-
lations which appear in the literature, focusing in particular on properties
of how the translation acts on formulas, before zooming in on the partic-
ular kind of translations with which we will be predominantly concerned
with in the rest of the thesis.

Gödel showed that we can translate Intuitionistic Logic into the normal
modal logic S4. It was noticed in the 60’s by A. Grzegorczyk that Intuition-
istic Logic can also be translated into a proper extension S4 using the same
translation. The question then arises of which logics we can translate Intu-
itionistic Logic into using this translation. In Chapter 3 we investigate the
general phenomenon which this is an instance of, investigating the notion
of the range of a translation. The idea here is to investigate the structure of
the set of logics which a given source logic can be faithfully embedded into
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by a given translation. Our focus here will be algebraic in nature, focusing
on minimal and maximal such elements, and the structures which such
set of logics form under the ⊆ relation. In Chapter 4 we will then focus on
some particular examples of this phenomenon, ending with a conjecture
concerning a simple and important translation.

In Chapter 5 we consider a notion which has appeared in a number
of places called translational equivalence, focusing in particular on some
recent results concerning translational equivalence due to F.J. Pelletier
and A. Urquhart (Pelletier [1984], Pelletier & Urquhart [2003], Pelletier
& Urquhart [2008]). This chapter closes by considering the view often
posited in the literature that translational equivalence captures our no-
tion of equivalence between logics.

In Chapter 6 we turn to considerations of non-normal modal logics,
and the translations between them. Here our focus will be on transla-
tions which embed weak non-normal modal logics into the smallest nor-
mal modal logic K. In particular we consider some questions concerning a
rather novel translation proposed by M. Brown in a paper on the logic of
action. This naturally raises the question of whether there is a translation
of a particular sort which translates the smallest congruential modal logic
E into the smallest normal modal logic K – a question which we then go
on to answer positively.

Before going on, though, we will need to go through some logical pre-
liminaries.

1.1 Logical Preliminaries

Propositional logics will largely be at issue here, with predicate logic re-
ferred to only in digressions or to make the occasional formal point more
clearly. We will take our propositional languages to be built from a stock
of denumerably many propositional variables p0,p1,p2, . . . using some stock
of primitive connectives in the usual way. We will often use the abbrevi-
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ations p,q, r to stand for the first three propositional variables. Given a
formula A, let comp(A) be the number of connectives present in A – i.e.
comp(pi) = 0, comp(#(A1, . . . ,An)) = [Σni=0comp(Ai)] + 1.

Throughout this thesis we will be concerned with two different con-
ceptions of logic, involving different choices of what syntactic entities our
logic will be concerned with – what syntactic entities we are taking to be
provable or unprovable in our logic. To make this issue clearer we will
introduce the idea of a sequent. Letting Γ ,∆ be finite sets of formulas of
the language under consideration, the pair 〈Γ ,∆〉 is a sequent over that lan-
guage

• for the logical framework SET-FMLA if ∆ = {B} for some formula B

• for the logical framework FMLA if ∆ = {B} for some formula B and
Γ = ∅.

Predominately we will be concerned here with the conception of logics
as sets of formulas (the FMLA framework) although we will occasionally
make use of the greater generality of thinking about some issues in the
SET-FMLA framework. In particular we will be interested occasionally in
consequence relations, which places some restrictions on what kinds of
sequents are provable in our logic. A relation ` : ℘(L)×L over a language L
is a consequence relation if it is closed under the following three rules (R),
(M) and (T) for all formulas A,B and all sets of formulas Γ and Γ ′.

• (R): A ` A

• (M): If Γ ` B then Γ ,A ` B.

• (T): If Γ ,A ` B and Γ ′ ` A then Γ ,Γ ′ ` B.

Here we are writing Γ ` A to mean 〈Γ ,A〉 ∈` – taking the usual abbreviation
of writing Γ ,A ` B instead of Γ ∪ {A} ` B. A consequence relation ` will be
said to be substitution-invariant if the set of sequents which comprise it are
closed under uniform substitution (of arbitrary formulas for propositional



1.1. LOGICAL PRELIMINARIES 5

variables). A logic in the FMLA framework will be taken to be any non-
empty set of formulas S closed under uniform substitution. Such a logic
will be said to be consistent whenever it does not contain all formulas in
the language. We will equally often shift between writing A ∈ S and `S A
when we are talking about formulas being theorems of logics in the FMLA

framework.
In what follows we shall predominantly be concerned with modal log-

ics – which extend the language of classical logic by the addition of a non-
boolean primitive operator �. More formally we will take the modal lan-
guage to be constructed out a denumerable set of propositional variables,
as above, using the connectives {¬,→,�} for the sake of definiteness – al-
though we will casually refer to the other (in this setting derived) classical
connectives as well as the truth and falsity constants > and ⊥ in our ex-
position. A set of formulas from the modal language S is a modal logic (in
the FMLA framework) whenever it fulfils the following two conditions.

• S contains all the classical tautologies

• S is closed under the rules of Modus Ponens and Uniform Substitu-
tion.

The smallest modal logic we will occasionally refer to as L.
Following the nomenclature of Chellas [1980] we will say that a modal

logic is congruential whenever it is also closed under the following rule.

A↔ BRE:
�A↔�B

The least such modal logic we will refer to as E. One useful fact about
modal logics which are congruential is that whenever A↔ B is provable in
such a logic then we can replace occurrences of A in a formula with occur-
rences of B without affecting the provability of the formula in question.

A modal logic will be said to be monotone if it is closed under the fol-
lowing rule.
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A→ BRM:
�A→�B

The least such modal logic we will refer to as EM – as we could also
equally axiomatize this logic as the least congruential modal logic which
contains the following axiom schemata.

M : �(A∧B)→ (�A∧�B).

We will say that a modal logic is regular if it is closed under the following
rule.

(A∧B)→ C
RR:

(�A∧�B)→�C

The least such modal logic we will refer to as EMC – as again we could
axiomatize this logic as the least congruential modal logic which contains
the axiom schema M as well as the following:

C : (�A∧�B)→�(A∧B).

Lastly, and most importantly we can call a modal logic normal if it is regu-
lar and contains the formula N (= �>). More conveniently though we will
say that a modal logic S is normal iff it contains the axiom K

K : �(A→ B)→ (�A→�B).

and is closed under the rule of necessitation.

ARN:
�A

Following terminology laid down in Segerberg [1971a], let us say than
a modal logic S extending the smallest normal modal logic K is quasi-
normal. In particular this means that all of the normal modal logics are
also quasi-normal.

We will make use of the above rules when giving our infrequent proofs
in modal logics – in particular making use of the fact that normal modal
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logics are closed under the rules RM and RR. We will refer to the corre-
sponding versions of the above rules using 3 instead of � as 3-RE,3-RM,
3-RR. It is relatively easy to derive the 3-versions of RE and RM from the
corresponding �-versions of these rules. For example:

(1) A→ B Hypothesis

(2) ¬B→¬A (1),T F

(3) �¬B→�¬A (2),RM

(4) ¬�¬A→¬�¬B (3),T F

(5) 3A→3B (4),Def−3.

In the above proof we made use on lines (2) and (4) of a rule (T F). This
is the following rule of proof where B follows from A1, . . . ,An using Truth
Functional reasoning.

A1, . . . ,An(T F)
B

This rule is slightly odd in not having a fixed number of premises, as well
as there being no application of the rule of which all other applications
are substitution instances. Nonetheless, we will find it very convenient to
use – shortening the lengths of proofs substantially and removing overly
involved classical manoeuvring.

Given this rule (T F) we can give an alternative characterization of a
modal logic as a set of formulas closed under uniform substitution and
the rule (T F) – the classical tautologies being instances of the rule where
n = 0, and closure under Modus Ponens following from instances of the
rule where n = 2, A1 = B1→ B and A2 = B1.

The smallest normal modal logic extending a normal modal logic S in
which all substitution instances of the formula A are provable we will de-
note by S⊕ {A}. We will often suppress the use of “{” and “}”, referring to
this logic as S⊕A. We will often denote the system K⊕{X,Y} by KXY when
X and Y are labels for modal axioms. We will denote the smallest modal
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Label Axiom

T �p→ p

D �p→3p
4 �p→��p

5 3p→�3p
B p→�3p
U �(�p→ p)
Ver �⊥
G (.2) 3�p→�3p
Grz �(�(p→�p)→ p)→ p

GL (W) �(�p→ p)→�p

.4 (ww5) p→ (3�p→�p)
w4 �p∧ p→��p

Altn �p0 ∨�(p0→ p1)∨ . . .∨�(p0 ∧ . . .∧ pn−1→ pn)

Figure 1.1: A list of the common modal axioms we will be referring to.
The names in parenthesis being other common names for the axiom in
question which can be found in the literature.
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logic extending S which proves all instances of an axiom A by S+A. Fol-
lowing Chellas [1980], if X is a label for an axiom of the form A→ B then
Xc will denote the axiom B→ A, and X! the axiom A↔ B. So, for example,
the axiom Dc is the formula 3p → �p, and T! is the axiom �p ↔ p (to
mention two examples we will encounter later, D and T being in Figure
1.1). We will follow the standard convention of referring to the logics KT4
and KT5 (or equivalently KT45 or KTB4) as S4 and S5 respectively.

Throughout this thesis there are a great many proofs which proceed by
induction upon the length of derivations of a formulaA in a normal modal
logic KXY. For such proofs, unless otherwise specified, we will be thinking
of them as being axiomatized using all the classical rules for the primitive
classical connectives (i.e. all the rules for {→,¬}), as well as the axioms K,
X, and Y and our rules to be Modus Ponens, uniform substitution and the
rule of necessitation.

In what follows we will make quite much of use of the very elegant
model theory for normal modal logics. A Kripke model M is an ordered
triple 〈W,R,V 〉 where W , ∅ is a set of points, R a binary relation on W
(R ⊆W ×W ) and V a function which maps the propositional variables to
subsets of W – the points at which the variable in question is true. The
structure 〈W,R〉 we will refer to as a frame – with a model 〈W,R,V 〉 being
a model on the frame 〈W,R〉. Letting R0xy be x = y, we can define Rn+1xy as
∃z(Rnxz∧Rzy). Given an accessibility relationRwe can define the ancestral
of the accessibility relation R∗ as {〈x,y〉 : ∃n ∈ Nat,Rnxy} – this being the
reflexive, transitive closure of R.

We can define truth of a formula A at a point x ∈ W in a model M =
〈W,R,V 〉 (written asM |=x A) inductively as follows.

M |=x pi if and only if x ∈ V (pi).

M |=x A→ B if and only if M 6|=x A orM |=x B.
M |=x ¬A if and only if M 6|=x A.
M |=x �A if and only if (∀y)(Rxy⇒M |=y A).
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We will say that a formula A is true throughout a model (M |= A) when-
ever for all x ∈ W , M |=x A. A formula A will be said to be valid on a
frame F = 〈W,R〉 (F |= A) whenever it is true throughout all models on that
frame. If C is a class of frames then we will say that A is valid over C when-
ever A is valid on all frames F ∈ C – notating this as C |= A. A modal logic
S is sound w.r.t. a class of frames C whenever A ∈ S implies that C |= A,
and complete w.r.t. a class of frames whenever C |= A implies that A ∈ S.
Sometimes when S is both sound and complete w.r.t. a class of frames C
we may say that S is determined by C. These notions generalize to classes
of models in the obvious way.

Given a modelM = 〈W,R,V 〉 and a point x ∈ W define the following
modelMx = 〈W x,Rx,V x〉 where:

• W x := {y|R∗xy}

• Rx := R∩W x ×W x

• V x(pi) := V (pi)∩W x

We will call a modelMx a point-generated submodel ofM, picking out the
point-generated submodel where x is the generating point as the submodel
ofM generated by x. The usefulness of generated submodels can be seen
from the following well known result.

Theorem 1.1.1 (Generation Theorem). For all models M = 〈W,R,V 〉 we
have the following for all points x ∈W and all formulas A.

M |=x A if and only ifMx |=x A.

We will also make tacit use of standard soundness and completeness
results for modal logics with respect to certain classes of frames as given
in Chellas [1980]. For example the normal modal logic KT is sound and
complete w.r.t. the class of frames CKT which satisfy the first order con-
dition (∀x)(Rxx) – i.e. the reflexive frames. The table below gives a list
of some common (and not so common) modal logics we will be concerned
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with, and the first order condition on frames which they are sound and
complete with respect to.

Label First order condition on Frames.

T (∀x)(Rxx) [Reflexive]
D (∀x)(∃y)(Rxy) [Serial]
4 (∀x)(∀y)(∀z)(Rxy&Ryz→ Rxz) [Transitive]
5 (∀x)(∀y)(∀z)(Rxy&Rxz→ Ryz) [Euclidean]
B (∀x)(∀y)(Rxy→ Ryx) [Symmetric]
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II

A Taxonomy of Translations

The main objects of study of this thesis are translations between logics,
functions which map formulas of one formal language (our source lan-
guage) to formulas of another (our target language) which possess certain
properties which make them more deserving of being called translations
than arbitrary functions from the source language to the target language.
There is a certain degree of freedom as to what kind of functions trans-
lations should be, and what kinds of properties they should possess, and
it is these issues which we will address here. In particular we will begin
by sketching out a taxonomy of different kinds of translations, before then
going on to give some more information on a particular kind of translation
with which we will primarily be interested, the modal-to-modal transla-
tion. We will then close the chapter by considering some examples which
illustrate the usefulness of such translation to properly stating and ad-
dressing certain kinds of philosophical problems.

Throughout we will predominantly be concerned with logics thought
of as sets of formulas, although at times we will find it more convenient to

13



14 CHAPTER 2. A TAXONOMY OF TRANSLATIONS

state things in terms of consequence relations – in which case the relevant
point concerning logics as set of formulas will follow by considering the
consequences of the empty set. Having made this point, let `0 and `1 be
consequence relations on propositional languages L0 and L1, `0 being the
source logic, and `1 the target logic of the translation. Then a function
τ : L0→ L1 is a translation. Moreover, we will say that τ embeds `0 into `1
whenever, for all formulas A1, . . . ,An,B we have that:

A1, . . . ,An `0 B only if τ(A1), . . . , τ(An) `1 τ(B). (2.1)

Translations which fulfil this rather weak condition have received rela-
tively little attention in the literature – notable exceptions being Silva et al.
[1999] and Humberstone [2000]. In Silva et al. [1999] translations be-
tween consequence operations which fulfil condition (2.1) are investigated
with respect to their category-theoretic properties, where it is shown that
logics and the translations between them form a category. In Humberstone
[2000] these translations are used to formally define what it is for a logic
to deviate from classical logic1 by endorsing classically invalid principles.
The idea here is that a logic `0 is contra-classical if there is no transla-
tion τ2 for which the analogue of (2.1) holds with `1 being the classical
consequence relation `CL. The idea here being that contra-classical logics
deviate from classical logic by commission in a non-superficial manner –
the presence of a translation τ showing the contra-classicality to be merely
superficial, a good example of this superficial contra-classicality being the
∨-treated-like-∧ logic mentioned in Humberstone [2000, p.440f.].

Usually though, we will be concerned with translations which at min-
imum fulfil the following condition for all formulas A1, . . . ,An,B.

1The idea of ‘contra-classicality’ can quite easily be extended to that of a logic being
‘contra-S’ for any logic S, later sections of Humberstone [2000] being devoted to contra-
intuitionistic logics for example.

2Which also fulfils the conditions which we will be calling variable-fixedness and
compositionality
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A1, . . . ,An `0 B if and only if τ(A1), . . . , τ(An) `1 τ(B). (2.2)

We will say that a translation τ faithfully embeds `0 into `1 whenever
(2.2) is fulfilled, the word faithful here recording the ‘if’ direction of the
above claim. Translations like this are called conservative in Feitosa &
D’Ottaviano [2001] and Silva et al. [1999], unprovability-preserving in In-
oué [1990] and exact in Pelletier & Urquhart [2003]. We will largely be
interested in logics in the FMLA framework, and thus will be concerned
predominantly with the n = 0 cases of (2.1) and (2.2).

If this was all there was to say about translations then things would
be quite dull, as we could faithfully embed all of the logics which are are
interested in into each other using a very uninteresting translation.

Let S and S′ be two consistent logics in the FMLA framework such that
S and S′ are non-empty. Let B> be an arbitrary theorem of our target logic
S′ (i.e. B> ∈ S′), and B⊥ be an arbitrary formula such that B⊥ < S′. Then
we can define τ(S,S′) as follows:

τ(S,S′)(A) =

 B>, A ∈ S
B⊥, A < S.

Theorem 2.0.2. For all formulas A, and all consistent, non-empty FMLA log-
ics S and S′ we have the following.

A ∈ S if and only if τ(S,S′)(A) ∈ S′.

Proof. For the ‘only if’ direction suppose that A ∈ S. Then τ(S,S′)(A) = B>,
and thus by definition τ(S,S′)(A) ∈ S′. For the ‘if’ direction suppose that A <
S. Then τ(S,S′)(A) = B⊥, and thus by definition τ(S,S′)(A) < S′ as desired.

The existence of such a translation tells us nothing about the logics in-
volved at all. In the light of such results then, in order for the enterprise
to be interesting we will want to look at certain ways of restricting trans-
lations so that they fulfil certain conditions. In what follows we will be
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concerned with four main features of the way in which translations act on
formulas, which will allow us to map out the whole translational land-
scape. First, though, we will need the following definition. Let us say that
a set T of translations from L0 to L1 is recursively interdependent if, for every
τ ∈ T and all primitive n-ary connectives # ∈ L0 there are m1, . . . ,mn ∈ Nat
and translations τ ′1,1(A1), . . . , τ ′1,m1

(A1), . . . , τ ′n,1(An), . . . , τ ′n,mn in T such that:

τ(#(A1, . . . ,An)) = #τ(τ ′1,1(A1), . . . , τ ′1,m1
(A1), . . . , τ ′n,1(An), . . . , τ ′n,mn(An))

Where p1, ...,pm1
,pm1+1, . . . ,pm1+...+mn−1+1, . . . ,pm1+...+mn are all and only the

propositional variables contained in #τ . Note that if T is recursively inter-
dependent then every translation τ ∈ T is such that, for all formulas A ∈ L0

there is a unique formula Aτ ∈ L1 such that τ(A) = Aτ .3

• Variable-Fixed: A translation τ is variable-fixed whenever for all
propositional variables pi we have that τ(pi) = pi .

• Schematic: A translation τ is schematic whenever there is a formula
C(p1) such that τ(pi) = C(pi).

• Compositional: A translation τ is compositional whenever for every
primitive n-ary connective #(A1, . . . ,An) in the language of L0 (the
domain of τ) there is a formula #τ(p1, . . . ,pn) in L1 (the codomain
of τ) constructed out of exactly the propositional variables p1, . . . ,pn
such that τ(#(A1, . . . ,An) = #τ(τ(A1), . . . , τ(An)).

• Recursive: A translation τ is recursive if it is a member of a recur-
sively interdependent set of translations.

Translations which are both variable fixed and compositional will, fol-
lowing Tokarz & Wójcicki [1971] and Wójcicki [1988], be called defini-
tional. Definitional translations are so named because the presence of one

3This can be shown by induction upon the complexity of formulas in L0. This way of
formulating the recursiveness condition upon translations is due to S. Kuhn.
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between two logics indicates that we can define the connectives of the
source logic in terms of those of the target logic – the definitions of each
of the primitive connectives of the source logic simply being the relevant
translation clause with all references to τ removed. It is worth noting that
all definitional translations are also schematic – the formula C(p1) there
being simply p1 itself.

It is worth stressing the difference between a translation τ being com-
positional and it being recursive. With a compositional translation of a
subformula A is determined by the primary connective of A. This need
not be so for a recursive translation – good examples of this being the non-
compositional but recursive translations for which τ(A) is ‘polarity depen-
dent’ (cf. the translations in §2.0.3 and §2.0.4). A recursive translation is
one where the result of translating a formula depends on the structure
of the whole formula, rather than just a part of it, while a compositional
translation is one where the result of translating a formula is the result of
translating all its sub-formulas. We can see how this makes all composi-
tional translations recursive – as the set {τ} is recursively interdependent
for a compositional translation.

We will occasionally want to consider translations which do not ‘inter-
fere’ with any but a select subclass of the connectives of a language – the
main example be the modal-to-modal translations considered at the end
of this chapter. To this end say that a translations τ is homonymous on a
connective # whenever τ(#(A1, . . . ,An)) = #(τ(A1), . . . , τ(An)), and homony-
mous on a set of connectives when it is homonymous on every connective
in that set.

These four properties of translations allow us to begin to sketch out a
taxonomy of translations (Figure 2). This taxonomy (which we will fur-
ther refine in section 2.0.5) leaves us with nine different types of transla-
tions – T1 to T9 – of which only T1 (the definitional translations) and T9

(the ‘one-off’ translations) have names. What we will now do is give ex-
amples of translations of types T1 through to T6 before, in section 2.0.5,
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definitional

comp. n. comp

schem. n. schem

v.f. n. v.f.

rec. n. rec

schem n.schem

v.f. n.v.f.

schem n.schem

v.f. n.v.f.T2

T3

T4 T5

T6

T7 T8

one-off

Figure 2.1: A preliminary Taxonomy of Translations.

refining how we classify the non-recursive translations in order to arrive
at our final taxonomy. It is worth noting that our approach to classifying
translations follows more closely those of Wójcicki [1988] and Prawitz &
Malmnäs [1968] in focusing on the ways in which the translation acts on
formulas, than the approach to classifying translations in terms of the way
in which they relate logics – as is done in Silva et al. [1999] and Feitosa &
D’Ottaviano [2001]. This mostly has to do with what our objects of inves-
tigation are here – we are concerned with what can be said about trans-
lations themselves, as opposed to translations in conjunction with source
and target logics.

One thing which the present author found somewhat interesting was
the lack of any T3-translations in the literature, especially considering the
fact that all the other translations can be found being used out in the log-
ical wild as it were. One can quite easily concoct translations which are
compositional while failing to be schematic, but it is harder to find any in-
teresting use for such translations.4 As such we will ignore them in what

4One can of course construct a T3 translation out of any definitional or T2 translation.
In the definitional case all one needs to do is let τ(pi) = pi+1 ∧ p0, moreover if the tar-
get logic of the original translation is substitution invariant then this new T3-translation
will also faithfully embed the source logic of the original definitional translation into its
target logic.
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follows.

2.0.1 T1 – Embedding Classical Logic into Łukasiewicz’s

Three-Valued Logic

Recall that Łukasiewicz’s three-valued Logic Ł3 is the set of formulas which
receive the value 1 under all ternary valuations v which assign either 1,2
or 3 to each propositional variable pi , where v(A) is calculated according
to the tables given in Figure 2.0.1.

→ 1 2 3

∗1 1 2 3
2 1 1 2
3 1 1 1

¬
∗1 3
2 2
3 1

Figure 2.2: Łukasiewicz’s Ł3

Consider the following translation τ taken from Tokarz & Wójcicki
[1971, p.126], which faithfully embeds Łukaseiwicz’s 3-valued logic Ł3

into Classical propositional logic (CL) with {→,¬} as primitive.

τ(pi) = pi ; τ(A→ B) = τ(A)→ (τ(A)→ τ(B)); τ(¬A) = τ(A)→¬τ(A).

As we can see this translation is both variable fixed and compositional,
and hence is what we are calling a definitional translation, a translation
of type T1. That it is a definitional translation which faithfully embeds CL

into Ł3 is encapsulated in Theorem 2.0.5. Before going on to prove this we
will require a Lemma regarding valuations.

Definition 2.0.3. Given a ternary assignment of values to the proposi-
tional variables v define a boolean assignment of values to the proposi-
tional variables v′ as follows.

v′(pi) =

 T , v(pi) = 1
F, v(pi) , 1.
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Lemma 2.0.4. Let v3 be a ternary assignment of values to the propositional
variables, v′3 be the corresponding boolean assignment. Let v and v′ be the
corresponding unique ternary and boolean valuations. Then for all formulas A
we have that v′(A) = T ⇐⇒ v(τ(A)) = 1.

Proof. By induction upon the construction of A, the only case of interest
being in the inductive step where A = ¬B and A = B→ C. Note that we
will occasionally, for the sake of convenience, write v(A→ B) = i/j → k/l

where i, j,k, l ∈ {1,2,3} to mean that either v(A) = i→ k or v(A) = j→ l.
For the case where A = ¬B, suppose that v′(A) = T . Then v′(B) = F

and we need then to show that v(τ(¬B)) = 1, given that by the Inductive
Hypothesis we know that v(τ(B)) , 1.

v(τ(¬B)) = v(τ(B))→¬v(τ(B))

= 2/3→¬(2/3)

= 2/3→ 2/1

= 1

Suppose then that v′(A) = F. Then v′(B) = T and we need to show that
v(τ(¬(B)) , 1, given that by the inductive hypothesis we know that v(τ(B)) =
1.

v(τ(¬B)) = v(τ(B))→¬v(τ(B))

= 1→ 3

= 3

For the case where A = B→ C, suppose that v′(A) = T . Then we know
that either (a) v′(B) = F or (b) v′(C) = T . For (a) we know that v(τ(B)) , 1
and so:

v(τ(B→ C) = v(τ(B))→ (v(τ(B))→ v(τ(C)))

= 2/3→ (2/3→ v(τ(C)))

= 1.
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For (b) we know that v(τ(C)) = 1 and so:

v(τ(B→ C)) = v(τ(B))→ (v(τ(B))→ v(τ(C)))

= v(τ(B))→ (v(τ(B))→ 1)

= v(τ(B))→ 1

= 1.

Suppose then that v′(A) = F. Then we know that v′(B) = T and v′(C) =
F – and thus by the induction hypothesis that v(τ(B)) = 1 and v(τ(C)) , 1.

v(τ(B→ C)) = v(τ(B))→ (v(τ(B))→ v(τ(C)))

= 1→ (1→ 2/3)

= 1→ (2/3)

= 2/3

And the result follows.

Theorem 2.0.5. For all formulas A we have that:

A1, . . . ,An `CL
B if and only if τ(A1), . . . , τ(An) `

Ł3
τ(B).

Proof. For the ‘only if’ direction suppose that τ(A1), . . . , τ(An) 0
Ł3
τ(B).

Then we know there is a ternary valuation v such that v(τ(Ai)) = 1 and
v(τ(B)) , 1. Letting v3 be the ternary assignment for which v is the unique
ternary valuation, and constructing the corresponding boolean assign-
ment v′3, and boolean assignment v′ we have by Lemma 2.0.4 that v′(Ai) =
T as v(τ(Ai)) = 1, and v′(B) = F as v(τ(B)) , 1, and so A1, . . . ,An 0CL

B. A
similar argument gives us the ‘if’ direction.

2.0.2 T2 – Embedding Orthologic into KTB

Orthologic is a generalization of “quantum logic” investigated in Gold-
blatt [1993]. The easiest way to see the idea behind orthologic is to look
at it semantically – as this allows us to overlook the syntactic oddities of
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the logic.5 Say that a structure 〈X,⊥〉 is an orthoframe if X is a non-empty
set, and ⊥ is an irreflexive and symmetric binary relation – an orthogonal-
ity relation. Whenever x⊥y for all points y ∈ Y ⊆ X we will write x⊥Y .
A set Y ⊆ X is ⊥-closed whenever ∀x ∈ X, x < Y only if ∃y ∈ X such that
y⊥Y and not x⊥y. A structureM = 〈X,⊥,V 〉 is an orthomodel on the frame
〈X,⊥〉 iff V is a function that assigns to each propositional variable pi a ⊥-
closed subset of X, V (pi). Formulas for orthologic are constructed in the
standard way out of a set of countably many propositional variables using
the connectives ‘∧’ (conjunction) and ‘∼’ (orthonegation). What it is for a
formula A to be true at a point x ∈ X in a modelM = 〈X,⊥,V 〉 is defined
by induction upon the complexity of A as follows.

M |=x pi if and only if x ∈ V (pi)

M |=x A∧B if and only if M |=x A andM |=x B
M |=x∼ A if and only if ∀y ∈ X,M |=y A only if x⊥y.

Orthomodels can be understood as giving us a description of the results of
performing certain tasks during an experiment. Elements of X represent
possible outcomes of a number of operations carried out in the perfor-
mance of some experiment. Elements x and y are orthogonal (x⊥y) iff
they are distinct outcomes of the same operation. In this setting proposi-
tions are taken to describe physical events, and are identified with the set
of outcomes of operations during our experiment in which they are true –
i.e. with subsets of X.

The smallest orthologic O is the set of all formulas A which are valid
on (the class of) all orthoframes. What we will do now is show that the
following translation τ faithfully embeds O into the normal modal logic

5From a syntactic point of view, orthologics are actually sets of ordered pairs of formu-
las 〈A,B〉 – as opposed to sets of formulas. For more details on this see Goldblatt [1993,
p.83]. We will avoid this issue by considering what are referred to as “orthotheorems” in
Rawling & Selesnick [2000] – these being the formulas A which are true throughout all
orthomodels.
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KTB.

τ(pi) = �3pi ; τ(A∧B) = τ(A)∧ τ(B); τ(∼ A) = �¬τ(A).

The translation τ given here is an example of a schematic translation
which is not variable fixed, in this case the formula C(p) which is used to
interpret the propositional variables being the formula �3p.

Proposition 2.0.6. Suppose that 〈X,⊥〉 is an orthoframe, and 〈X,R〉 is a Kripke
frame such that x⊥y iff not Rxy, and that V⊥ and VR are valuation functions
such that for all points x ∈ X:

〈X,R,VR〉 |=x �3pi ⇐⇒ 〈X,⊥,V⊥〉 |=x pi .

Then for all formulas in the language of orthologic and all points x ∈ X we have
the following.

〈X,R,VR〉 |=x τ(A) ⇐⇒ 〈X,⊥,V⊥〉 |=x A.

Proof. By induction upon the complexity of A, the only cases of interest
being that in the inductive step where A =∼ B for some formula B.

Suppose that 〈X,⊥,V⊥〉 |=x∼ B for some formula B. This is the case iff
for all y, if 〈X,⊥,V⊥〉 |=y B then x⊥y. By the inductive hypothesis this is
the case iff for all y, if 〈X,R,VR〉 |=y τ(B) then not Rxy. Taking the contra-
positive this is the case iff for all y ∈ X, if Rxy then 〈X,R,VR〉 6|=x τ(B), and
thus 〈X,R,VR〉 |=x �¬τ(B).

Theorem 2.0.7 (Goldblatt [1993, p.91]). For all formulas A we have the fol-
lowing:

A ∈O if and only if τ(A) ∈KTB.

Proof. For the ‘only if’ direction suppose that τ(A) < KTB. Then there is
a reflexive, symmetric Kripke model MKTB = 〈W,R,V 〉 such that M 6|=x
τ(A). Construct a new orthomodelMO = 〈W,⊥,V⊥〉 where ⊥ =W ×W \R
and V⊥(pi) = {x|MKTB |=x �3pi}. Then by Proposition 2.0.6 we know that
MO 6|=x A and hence that A <O.
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For the ‘if’ direction suppose that A < O. Then there is an orthomodel
M = 〈X,⊥,V 〉 such thatM 6|=x A. Construct a new Kripke modelMKTB =
〈X,R,V 〉 where R = X ×X \⊥. What remains to show is thatM |=x pi ⇐⇒
MKTB |=x �3pi . The ‘only if’ direction follows from the B-axiom. For
the ‘if’ direction suppose thatMKTB |=x �3pi . Then for all y ∈ R(x) there
is a z such z ∈ R(y) and MKTB |=z pi [and thus M |=z pi]. Suppose then
that x < V (pi). Then as V (pi) is an ⊥-closed subset of X it follows then
that there is a point t such that Rxt and for all w ∈ X w ∈ V (pi) iff not
Rtw. But as t ∈ R(x) it follows that there is a point z ∈ R(t) such that
z ∈ V (pi). Thus, as V (pi) is ⊥-closed it must be that x ∈ V (pi) as desired.
Thus by Proposition 2.0.6 it follows thatMKTB 6|=x τ(A) and consequently
that τ(A) <KTB.

2.0.3 T4 – Embedding S4Grz into S4

There are, though, examples of translations which are variable-fixed but
not compositional which are used to embed one logic faithfully into an-
other. Consider the following pair of translations:

τ+(pi) = pi τ−(pi) = pi
τ+(¬A) = ¬τ−(A) τ−(¬A) = ¬τ+(A)
τ+(A∧B) = τ+(A)∧ τ+(B) τ−(A∧B) = τ−(A)∧ τ−(B)
τ+(A→ B) = τ−(A)→ τ+(B) τ−(A→ B) = τ+(A)→ τ−(B)
τ+(�A) = �(�(τ+(A)→�τ−(A))→ τ+(A)) τ−(�A) = �τ−(A)

We can view the above pair of translations as a single translation by
treating τ− as an auxiliary translation used in the definition of τ+. Indeed
this is the way in which this pair of translations is used to show that we can
faithfully embed S4Grz into S4. Moreover, we can show that the transla-
tion τ+ is variable-fixed but not compositional. To see this consider that if
τ+ were compositional then τ+(¬�p) would be C(τ+(�p)) for some formula
C(p). But τ+(¬�p) = ¬�p, while τ+(�p) = �(�(p→ �p)→ p). Therefore,
as τ+(¬�p) , C(�(�(p→�p)→ p)) it follows that τ+ is not compositional.
Similar reasoning can be used to show that τ− is also not compositional.
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To see that this is a recursive translation, the interesting part is the
clause for � which is that τ+(�A) = �(�(τ+(A) → �τ−(A)) → τ+(A)). In
this case we have �τ(p,q) = �(�(p→ �q)→ p) with m1 = 2, τ ′1,1 = τ+ and
τ ′1,2 = τ−.

Demri and Goré show that this translation faithfully embeds S4Grz
into S4, making use of the following Lemma.

Lemma 2.0.8. For all formulas A we have that A↔ τ+(A) ∈ S4Grz and A↔
τ−(A) ∈ S4Grz.

Proof. By simultaneous induction upon the complexity of A – the main
cases of interest being those where (i) A = �B or (ii)A = ¬B.

For case (i) we need to show that (a) �B ↔ τ+(�B) ∈ S4Grz, and (b)
that �B ↔ τ−(�B) ∈ S4Grz given that both B ↔ τ−(B) ∈ S4Grz and also
that B↔ τ+(B) ∈ S4Grz. For case (a) we know that the following formula
is provable in S4Grz:

[�(�(p→�p))→ p]↔�p. (2.3)

So it follows by uniform substitution that [�(�(B → �B)) → B] ↔ �B ∈
S4Grz, and thus by the induction hypothesis [�(�(τ+(B) → �τ−(B))) →
τ+(B)]↔ �B ∈ S4Grz. For case (b) we know that �B↔ �B ∈ S4Grz, and
thus by the induction hypothesis �B↔�τ−(B) ∈ S4Grz as desired.

For case (ii) we know that ¬B↔¬B ∈ S4Grz, and thus by the induction
hypothesis it follows that both ¬B↔¬τ−(B) ∈ S4Grz, and also that ¬B↔
¬τ+(B) ∈ S4Grz as desired.

Theorem 2.0.9 (Demri & Goré [2000]). For all formulas A we have the fol-
lowing:

A ∈ S4Grz if and only if τ+(A) ∈ S4.

Proof. For the ‘if’ direction suppose that τ+(A) ∈ S4. Then as S4 ⊆ S4Grz
it follows that τ+(A) ∈ S4Grz and hence that A ∈ S4Grz by Lemma 2.0.8.

The ‘only if’ direction is proved using sequent-calculi for S4 and S4Grz
in Demri & Goré [2000, p.157f.].
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Another interesting example of variable-fixed but not compositional
translations is that given in Fitting [1988]. There it is shown that we can
faithfully embed K4 into K using the family of translations τn+ for n ∈Nat,
which we give below.

τn+ (pi) = pi τn− (pi) = pi
τn+ (¬A) = ¬τn− (A) τn− (¬A) = ¬τn+ (A)
τn+ (A∧B) = τn+ (A)∧ τn+ (B) τn− (A∧B) = τn− (A)∧ τn− (B)
τn+ (A→ B) = τn− (A)→ τn+ (B) τn− (A→ B) = τn+ (A)→ τn− (B)
τn+ (�A) = �τn+ (A) τn− (�A) = �τn− (A)∧ . . .∧�nτn− (A).

What Fitting shows is that A ∈ K4 iff there is an n ∈ Nat such that
τn+ (A) ∈ K. The work in Fitting [1988] is elaborated on in Cerrito & Mayer
[1997], where some upper bounds on n are given for this translation – in

particular they show that A ∈K4 iff τmd(A)2

+ ∈K where md(A) is the modal
degree of A. Translational embeddings of this kind will be outside the
scope of this thesis. Throughout we are concerned with results where we
can produce a translation τ and two logics S and S′ and use the translation
to faithfully embed one into the other. The above kind of result is one
where we are given a family {τn|n ∈ Nat} of translations and two logics S

and S′ such that for any given formula A, there is a translation τn in the
set such that τn(A) ∈ S′ – the translation used being determined by the
structure of the formula.

2.0.4 T5 – Embedding Data Logic into Modal Logic

In Veltman [1981] we are presented with a logic designed to model rea-
soning in environments when the amount of information we can have at
any one time is incomplete. The logic in question is designed to model
the inferential behaviour of the natural language condition, in addition to
the natural language modalities MAY and MUST . The semantic struc-
tures for this logic are Data Models. A Data Model M = 〈I,v,V 〉 consist
of a partially ordered set of points 〈I,v〉 each element of which we will
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think of as an information state, each of whose maximal chains ends in a
greatest element – the idea here being that the search for information will
eventually result in a complete information state. The function V assigns
a partial valuation of the propositional variables Vi to each information
state i ∈ I . Additionally the valuation is required to be persistent in the
sense that whenever i v j we have that Vj is an extension of Vi .

The reason for having our valuation functions be partial functions (rather
than functions) is that it allows us to model the effects of having partial
information – of agents being able to have information to the effect that ‘A’
is true without having information that ‘∼ A’ is false. To this end we need
to distinguish between a model failing to tell us that something is true,
and a model telling us that something is false. To this end we will write
M |=x A whenever ‘A’ is true at x (i.e. Vx(A) = 1), and M =|x A whenever
‘A’ is false at x (i.e. Vx(A) = 0), noting that we can have both M 6|=x A and
M 6=|x A whenever Vx(A) is undefined.

The propositional language for Data logic consists of the connectives
∼,∧,∨,→,MAY ,MUST , whose semantic clauses are as follows.
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M |=x pi if Vx(pi) = 1
M =|x pi if Vx(pi) = 0.
M |=x A∧B if M |=x A and M |=x B
M =|x A∧B if M =|x A or M =|x B
M |=x A∨B if M |=x A or M |=x B
M =|x A∨B if M =|x A and M =|x B
M |=x∼ A if M =|x A
M =|x∼ A if M |=x A
M |=x A→ B if ∀y(y w x, M |=y A only if M |=y B.)
M =|x A→ B if ∃y(y w x, M |=y A and M =|y B.)
M |=xMAY (A) if ∃y(y w x, M |=y A.)
M =|xMAY (A) if ∀y(y w x, not M |=y A.)
M |=xMUST (A) if ∀y(y w x&∀z(z w y⇒ z = y) only if M |=y A).
M =|xMUST (A) if ∃y(y w x&∀z(z w y⇒ z = y) and M =|y A).

In van Benthem [1986] a translation which faithfully embeds Data
Logic into S4Gc is given, where S4Gc (sometimes referred to as S4.1) is
the normal extension of S4 by the following axiom schema:

Gc : �3A→3�A.

This normal modal logic is determined by the class of frames 〈W,R〉 such
that R is reflexive, transitive and in addition satisfy the condition that
∀x∃y(Rxy ∧∀z(Ryz→ y = z)).

The translation in question maps formulas in the data logic language
to formulas in the modal language, and is defined as follows.
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(pi)+ = �pi (pi)− = �¬pi
(∼ A)+ = (A)− (∼ A)− = (A)+

(A∧B)+ = (A)+ ∧ (B)+ (A∧B)− = (A)− ∨ (B)−

(A∨B)+ = (A)+ ∨ (B)+ (A∨B)− = (A)− ∧ (B)−

(A→ B)+ = �((A)+→ (B)+) (A→ B)− = 3((A)+ ∧ (B)−)
(MAY (A))+ = 3(A)+ (MAY (A))− = �¬(A)+

(MUST (A))+ = �3(A)+ (MUST (A))− = 3�(A)−

At first glance it may appear as if (·)+ is a compositional translation, but
as it happens when we remove the double recursion in the clauses for ∼we
can see (as noted in Escriba [1989]) that this is in fact a non-compositional
translation. For this translation to be compositional then we would have
(∼ p)+ = #(p)+. We know that p+ = �p, and that (∼ p)+ = (p)− = �¬p – but
that for no formula # do we have #(�p) = �¬p. So (·)+ is not compositional.

Now, in order to show that this translation is a faithful embedding of
Data Logic into S4Gc we will need to describe two different model con-
structions: one which takes us from a data model to a model for S4Gc and
one which takes us from a model for S4Gc to a Data Model.

Proposition 2.0.10 (van Benthem [1986, p.234]). Let M = 〈I,v,V 〉 be a
Data Model, and construct a new model M = 〈I,v,V ∗〉 by setting V ∗(pi) =
{i ∈ I |Vi(pi) = 1, or Vi(pi) = 0 and for some j w i Vj(pi) = 0}. Then for all point
i ∈ I and data logic formulas A we have the following.

M |=i A if and only if M |=i (A)+ (2.4)

M =|i A if and only if M |=i (A)−. (2.5)

Proof. By induction upon the complexity of A, the only case of interest
being the basis case.

For the ‘only if’ direction of (2.4) suppose that M |=i pi . Then we know
that Vi(pi) = 1, and hence as V is hereditary that for all j v i that Vj(pi) = 1.
Hence we know that for all j v i that V ∗(pi) = 1 and thus thatM |=i �pi .
Suppose then for the ‘if’ direction that M |=i �pi . Then it follows that
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M |=i pi and thus by the definition of V ∗ either Vi(pi) = 1 (and hence M |=i
pi) or Vi(pi) , 0 and there is a j v i such that Vj = 0 – but M |=j pi , and
hence Vj(pi) cannot be 0!

For the ‘only if’ direction of (2.5) suppose now that M =|i pi . Then
Vi(pi) = 0 and Vj(pi) = 0 for all j v i – so for all such j we have thatM |=j
¬pi – and thusM |=i �¬pi . Suppose then for the ‘if’ direction thatM |=i
�¬pi . Consider now any maximal j v i. It follows then that M |=j ¬pi ,
and hence Vj(pi) = 0. Suppose then that Vi(pi) , 0. Then we would have
that V ∗i (pi) = 1 and thusM |=i pi and alsoM |=i ¬pi ! So Vi(pi) = 0 and thus
M =|i pi .

Proposition 2.0.11 (van Benthem [1986, p.235]). Let M′ = 〈W,R,V 〉 be a
model for S4Gc, and construct a new model M ′ = 〈W,R,V ′〉 where V ′x(pi) = 1
ifM′ |=x �p and V ′x(pi) = 0 ifM′ |=x �¬p. Then for all points i ∈W and data
logic formulas A we have the following.

M ′ |=i A if and only if M′ |=i (A)+ (2.6)

M ′ =|i A if and only if M′ |=i (A)−. (2.7)

Theorem 2.0.12 (van Benthem [1986, p.235]). A is a theorem of Data Logic
if and only if A+ is a theorem of S4Gc.

2.0.5 Non-Recursive Translations

As it turns out we will need one more property in order to properly charac-
terize the class of non-recursive translations, and give our final taxonomy
of translations. The easiest way to introduce this property is by way of two
examples – in this case looking at the T7-translations and T9-translations.

2.0.5.1 T7 – Translations and the Admissibility of Rules

Translations which are variable-fixed but not compositional can be of great
use in giving syntactic proofs of the admissibility of rules in modal logics.
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We can find examples of this enterprise in Williamson [1993], which is in-
spired by similar syntactic results in Chellas [1980, p.124f.]. The syntactic
method of proving rule admissibility using translations allows us to prove
a number of results where the usual model theoretic methods are not ap-
plicable. The translations used in the above two references are examples
of what M. Crabbé calls ‘normal transformations’ in Crabbé [1991]. A
normal transformation is a translation Φ which maps formulas to formulas
such that:

• Φ(A) = A if A is pi or > or ⊥.

• Φ(¬A) = ¬Φ(A) .

• Φ(A→ B) = Φ(A)→ Φ(B).

In particular we will be concerned with normal tranformations con-
structed out of the normal transformation ΦC(�A) = C for some formula
C.

Consider now the following normal translations which we will use be-
low to show that Löb’s rule is admissible in K. Given a normal transfor-
mation Φ define the following sequence Φn of normal transformations:

• Φ0 = Φ

• Φn+1(�A) = �Φn(A).

Lemma 2.0.13. For all n ≥ comp(A) we have that Φn(A) = A.

In particular we will be concerned with the translation Φ>,n where:

• Φ>,n(A) = A for all n ≥ comp(A).

• Φ>,n+1(�A) = �n>.

Lemma 2.0.14. Φ>,n(�n+1A) = �n>.

Proposition 2.0.15. The translation Φ>,n embeds K into itself.
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Given all of this we are now in a position to give a syntactic proof of
the admissibility of Löb’s rule in K.

Theorem 2.0.16 (Crabbé). If �A→ A ∈K then A ∈K.

Proof. Suppose that �A→ A ∈ K and fix on an n such that n ≥ comp(A).
Then as �A→ A ∈ K it follows by monotonicity and modus ponens that
�n+1A→ A ∈ K. By Proposition 2.0.15 we know that Φ>,n(�n+1A→ A) ∈
K, i.e. that �n> → A ∈ K. As �n> ∈ K it follows by modus ponens that
A ∈K as desired.

2.0.5.2 T9 – One-off Translations

After definitional translations the next most common translation are those
which apply a ‘one-off’ non-recursive manipulation to formulas. The clas-
sic example here is Glivenko’s translation which faithfully embeds the set
of classical theorems into the set of intuitionistic theorems in the follow-
ing sense.

Theorem 2.0.17 (Glivenko). For all formulas A we have the following:

A ∈ CL if and only if ¬¬A ∈ IL.

One-off translations are those translations τ where τ(A) is the formula
C(A) for some formula C(p) constructed out of at least the propositional
variable p. Note that this is a more liberal use of the C(·) notation than
used earlier, where the formula C was forced to be constructed solely out
of the propositional variable p. In the Glivenko case the formula C here
is of this more restricted type, being the formula ‘¬¬p’, but the (admit-
tedly not very useful) translation for which τ(A) = A∧q where the formula
C(p) = p∧ q would also be counted as a ‘one off’ translation.

Consider the translation τ ′ which is homonymous on the classical con-
nectives for which we also have:

τ ′(pi) = pi+1; τ ′(�A) = �τ ′(A)∧ p0. (2.8)
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The translation mentioned above is a T5-translation. But now consider
the translation τ such that τ(A) = p0 → τ ′(A). This translation is used in
Aanderaa [1969] to faithfully embed S2 into KT. We mention this transla-
tion here mostly to point out that it is not, despite what one might briefly
think, a ‘one-off’ translation. As it happens this is in fact a T5-translation
– being recursive, non-compositional and not variable-fixed.

What these two example allows us to highlight is a particular property
of translations – namely that of a translation being depth-limited. We can
broadly think of non-recursive translations as coming in two varieties –
those which are one-off translations and those which are depth-limited. A
translation τ is a one-off translation if the result of translating a formula
A is just the result of substituting that formula into another fixed formula
– i.e. one where τ(A) = C(A) for some formula C(p). The depth-limited
translations are those for which we can isolate the failure of recursiveness
in a particular translation clause. In the case above this is the clause for
�A which is not of the form C(τ(A)) for some formula C. Given this, we
are left with the Taxonomy depicted in Figure 2.3

n. rec

one-off

schem n.schem

v.f. n.v.f.

T7 T8

depth-limited n. depth-limited

Figure 2.3: A Reclassification of the Non-Recursive Translations.
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There are just a few housecleaning notes left to be made regarding our
final taxonomy. Firstly we coudl

Firstly, we could derive all of the above results concerning the admis-
sibility of Löb’s rule in K in terms of translations for which Φ(pi) = ¬¬pi
this being an example of a T6 translation in our taxonomy. We can also get
an example of a T6 translation by altering our example of a T4 translation
above so that τ+(pi) = pi+1 and τ−(pi) = pi+1.

Secondly, we should technically split our ‘one-off’ translations into two
different classes – those which are schematic and those which are not. We
have not done so in the interests of brevity. What the schematic/non-
schematic distinction tells us in this case is what the structure of the for-
mula used by the translation is. If the formula is constructed out of a
single variable p then the translation will be schematic. It is worth men-
tioning that the translation which we introduced at the start of this chapter
falls into the non-schematic one-off translation camp.

Lastly we turn to an interesting example of a translation which is both
non-recursive and non-schematic – the unnamed category in our new tax-
onomy.

2.0.6 Non-Recursive, Non-Schematic Translations: Embed-

ding Johansson’s Minimal Logic into Intuitionistic

Logic

The following translation, a variation of which appears in Prawitz & Malm-
näs [1968, p.219], embeds Johansson’s Minimal Logic (J) into Intuitionis-
tic Logic (IL). The idea here is to single out a propositional variable (p0)
to act as the falsum constant ⊥, which minimal logic treats as an arbitrary
propositional constant. To accommodate this we ‘shift’ the propositional
variables used in a formula so that wherever the original formula talks
about pi the translation talks about pi+1.
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τ(pi) = pi+1; τ(⊥) = p0; τ(A→ B) = τ(A)→ τ(B);

It is easy to see that this translation is not schematic (and hence also
not variable fixed). To see that it is not recursive what we need to note is
that, in order for the translation to count as a recursive one we would need
to have a formula ⊥τ constructed out of the empty set of propositional
variables, which p0 is not.

Translations which use this method of getting a propositional vari-
able to act as a propositional constant appear in the literature on modal
logic also – being mentioned in a footnote as a modification of a transla-
tion given in Cresswell [1967, p.201] to faithfully embed Lemmon’s non-
normal modal logic E2 (i.e. EMT) into KT – the propositional variable
being used to stand in for a propositional constant true at exactly the
normal worlds in a model – the translation clause for �A then becoming
‘p0 ∧�τ(A)’.

We will prove the following embedding result semantically by making
use of the semantics for minimal and intuitionistic logic given in Segerberg
[1968]. Let us say that a set X is hereditary under a relation R whenever if
x ∈ X and Rxy then y ∈ X. Models here are structures 〈X,R,Q,V 〉 where
X is a nonempty set, R is a partial ordering on X, Q ⊆ X is a set of non-
normal elements which is hereditary under R, and V is a function which
maps the propositional variables to hereditary subsets of X. Truth of a
formula at a point x in a modelM = 〈X,R,Q,V 〉 is defined inductively as
follows.

M |=x pi if and only if x ∈ V (pi)

M |=x ⊥ if and only if x ∈Q
M |=x A→ B if and only if ∀y([Rxy andM |=y A]⇒M |=y B)

Say that a model 〈X,R,Q,V 〉 is normal whenever Q = ∅. Then (for the
present purpose) IL will denote the logic determined by the class of all
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normal models, and J the logic determined by the class of all models.6

Then IL is determined by the class of all normal models, and J by the
class of all models.

Theorem 2.0.18. For all formulas A we have that:

`
J
A if and only if `

IL
τ(A).

Proof. For the ‘if’ direction suppose that 0
IL
τ(A). Then there is a normal

modelM = 〈X,R,V 〉 such thatM 6|=x τ(A) for some point x ∈ X. Construct
a new modelM′ = 〈X,R,Q,V ′〉 by setting Q = {x |x ∈ V (p0)} and V ′(pi) =
V (pi+1). Then it is quick to prove by induction upon the complexity of
formulas thatM |=x τ(A) ⇐⇒ M′ |=x A, and thus thatM′ 6|=x A. As this is
a model for J it follows then that 0

J
A.

For the ‘only if’ direction suppose that 0
J
A. Then there is a model

M = 〈X,R,Q,V 〉 such that M 6|=x A for some point x ∈ W . Construct a
new model M′ = 〈X,R,∅,V ′〉 by setting V ′(pi) = V (pi−1) for all i > 0 and
V ′(p0) = Q. It is again easy to show by induction upon the complexity of
formulas thatM |=x A ⇐⇒ M′ |=x τ(A), and hence thatM′ 6|=x τ(A) – from
which it follows that 0

IL
τ(A).

2.0.7 Translations and Substitutions

In this section we will briefly look at the interactions between translations
and substitutions – in particular investigating a commutativity condition
which relates translations and substitutions which we will use implicitly
from here on. Before continuing it will be useful to recall the definition of
what it is for a function σ be be a substitution.

Definition 2.0.19. A function σ : L→ L (where L is a propositional lan-
guage) is a substitution if and only if σ#(A1, . . . ,An) = #(σ (A1), . . . ,σ (An)) for
every n-ary connective # in the language under consideration.

6Technically we are only dealing with the embedding of the {→,⊥}-fragments of both
IL and J, although nothing essential hangs on this.
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The following observation is due to Lloyd Humberstone (unpublished).

Theorem 2.0.20. Suppose that τ is a compositional and variable-fixed trans-
lation from a logic `0 to a logic `1. Then for all substitutions σ : L0→ L0, there
exists a substitution σ ′ : L1→ L1 such that:

σ ′ ◦ τ = τ ◦ σ. (2.9)

Proof. Let σ ′(pi) = τ(σ (pi)). Let A = #(p1, . . . ,pn) where # is some primitive
connective of L0. Then the rhs of the above inset equation is

#τ(τ(σ (p1)), . . . , τ(σ (pn))).

This is clearly the result of substituting τ(σ (pi)) for pi in #τ – which is to
say σ ′(τ(A)), and the result follows.

One might wonder whether the converse to the above Theorem holds,
namely that if a translation τ is such that, for every substitution σ there is
a substitution σ ′ such that σ ′ ◦ τ = τ ◦ σ , then τ is variable fixed and com-
positional. To see that this isn’t the case consider the following example.

Proposition 2.0.21. For all substitutions σ , and and the ‘one off’ translation
τ(A) = ¬¬A, σ ◦ τ = τ ◦ σ .

Proof. We will show that σ (τ(A)) = τ(σ (A)). To do this we note that the
lhs is ¬¬σ (A). The rhs is simply σ (¬¬A), which by the definition of a
substitution is just ¬¬σ (A), completing the proof.

As we can see, the essential property which allows this to happen is the
way in which substitutions interact with the connectives – acting homony-
mously upon them. In fact, it is quite easy to see that we can prove the
analogous result for any ‘one-off’ translation. The pertinent fact isolated
here is that the property of having substitutions interact with translations
in the way specified above does not ensure that the translation is compo-
sitional – this being the property which our counterexample capitalized
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upon. This then raises the following question: when exactly is it the case
that we have that a translation τ has the property that for all substitutions
σ there is a substitution σ ′ such that τ ◦ σ = σ ′ ◦ τ .

As the above counterexample shows, clearly the translation being com-
positional is not what’s important. It is equally easy to show that it is not
variable-fixedness which is important here. To show this we will return to
the translations we have mentioned above for which τ(pi) = pi+1.

Theorem 2.0.22. Suppose that τ is a translation such that τ(pi) = pi+1, and for
all primitive connectives # of L0 we have that τ(#(A1, . . . ,An) = B(τ(A1), . . . , τ(An),p0)
for some formula B in L1. Then for all substitutions σ , there is a translation σ ′

such that σ ′ ◦ τ = τ ◦ σ .

Proof. Define σ ′ as follows.

σ ′(pi) =

 p0, i = 0
τ(σ (pi−1)), i > 0.

Let A = #(p0, . . . ,pn). Then the rhs of the condition is

B(τ(σ (p0)), . . . , τ(σ (pn)),p0).

For the lhs we have

σ ′(B(p0, . . . ,pn,pn+1) = B(p0, τ(σ (p0)), . . . , τ(σ (pn−1)), τ(σ (pn))),

and the result follows.

Translations like those in the above theorem are interesting in that they
are, in many respects, very nearly definitional while still failing to be com-
positional or variable fixed. Two interesting things come out of the above
discussion. The first is that we are able to construct substitutions which
interact with translations in the desired fashion for a number of different
kinds of translations. The second, and perhaps more interesting is that
it shows that the taxonomy outlined above does not capture all the var-
ious interesting properties of translations in the sense that the features
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of translations used to construct the taxonomy are not all and only the
features which are important in assessing whether a translation has a par-
ticular property.

2.1 Modal Translations

Throughout the rest of this thesis we will focus on a particular kind of
definitional translation, although we will still have occasion to mention
other kinds of translations. There is a good philosophical reason to fo-
cus on definitional translations. The presence of a definitional translation
between two logics carries with it some immediate information, namely
that we can define all of the connectives of the source logic in terms of the
target logic – the clauses of the translation giving us a recipe as to how.
In what follows we will mainly be considering modal logics, and as all of
these leave the classical connectives unchanged we will be concerned with
translations which reflect this fact – translating the classical connectives
as themselves.

Definition 2.1.1. Let C(p) be a formula of at most one variable p. Then
the translation τC is defined as follows: τC(pi) = pi , τC(#(A1, . . . ,An)) =
#(τC(A1), . . . , τC(An)) for all classical connectives #, and τC(�A) = C(τC(A)).

Definition 2.1.2. A translation τ is a modal-to-modal translation iff τ is τC
for some formula C(p) of at most one variable.

We will follow Zolin [2000] in thinking of a formula C(p) as inducing
the modality λp.C(p) – both the formula and modality being referred to as
C(p), although often we will also refer to λp.C(p) simply as C. Such for-
mulas are called singulary modal functions in Hughes & Cresswell [1968].
What Hughes and Cresswell refer to as a modality (a sequence of O1 . . .On
where eachOi is either � or ¬) Zolin calls a linear modality. Given a modal
logic S and a modality C(p), we will (following Zolin [2000]) define the
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logic of C(p) over S – S(C) – as the following set of formulas.

S(C) = {A|τC(A) ∈ S}. (2.10)

It is easy to see that the translation τC faithfully embeds S into S′ whenever
S′(C) = S. We will say that two modalities C′ and C′′ are equivalent over a
logic S whenever C′(p)↔ C′′(p) ∈ S, and analogous over S whenever S(C′) =
S(C′′).

To illustrate the notation introduced above we will look at a very sim-
ple modal-to-modal translation, the translation τ�� which replaces all oc-
currences of � within a formula with ��. Say that a modal logic S is iter-
ative if S(��) = S – i.e. if � and �� are analogous over S. In Zolin [2000]
it is shown that KTB is iterative. What we will now show is that K is itera-
tive, using a different model construction from that given in Humberstone
[2006] to a somewhat similar effect, the difference arising concerning how
reflexive points are treated.

Definition 2.1.3. Given a model M = 〈W,R,V 〉, let W = {w|w ∈ W } be a
set of points disjoint from, and in one-to-one correspondence withW , and
construct a new modelM+ = 〈W +,S,V +〉 as follows.

• W + := W ∪W .

• S := {〈x,x〉|x ∈W } ∪ {〈x,y〉|Rxy} ∪ {〈x,x〉,〈x,x〉|Rxx}.

• V +(pi) := V (pi)∪ {x|x ∈ V (pi)}.

What the above model construction does is add new points (‘under-
studies’) to our original model, and alter the accessibility relation so that
for all points x ∈W any point in R(x) is now in S(x) – with both the under-
study and the original point being reflexive in the new model whenever
the original point was reflexive in the original model.

Lemma 2.1.4. LetM+ be the result of applying the above model construction
to a model M. Then for all formulas A, and all points x ∈ W we have the
following.

M+ |=x τ��(A) if and only ifM+ |=x τ��(A).
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Proof. By induction upon the complexity of A. For the base case where A
is a propositional variable pi we note that the construction of V + ensures
thatM+ |=x pi ⇐⇒ M+ |=x pi . The only case of interest then is that in the
inductive step where A = �B for some formula B.

For the ‘only if’ direction assume for a contradiction that bothM+ |=x
��τ��(B) andM+ 6|=x ��τ��(B). This means that either (i) Sxx andM+ 6|=x
τ��(B), (ii)M+ 6|=y τ��(B), for some y ∈ S(x), or (iii)M+ 6|=z τ��(B) for some
z ∈ S(S(x)). If (i) is the case then by the induction hypothesis we know that
M+ 6|=x τ��(B) and hence as Sxx that Sxx, and thus thatM+ 6|=x ��τ��(B).
For (ii) we need to note that, by construction, anything which is 1 S-step
away from x is 2 S-steps way from x, and hence thatM+ 6|=y τ��(B). Con-
sequently it follows thatM+ 6|=x ��τ��(B). For (iii) we note that by the in-
duction hypothesis this would require thatM+ 6|=z τ��(B). As z is 2 S-steps
away from x we know that z is 2 S-steps away from x, and consequently
that M+ 6|=x ��τ��(B). As all three cases lead to a contradiction we can
conclude thatM+ |=x ��τ��(B).

For the ‘if’ direction now assume thatM+ 6|=x ��τ��(B) and thatM+ |=x
��τ��(B). This would mean that either (i) Sxx and M+ 6|=x τ��(B), (ii)
Sxx and M+ 6|=x τ��(B) or (iii) M+ 6|=y τ��(B) for some y ∈ S(S(x)). For
(i) and (ii) it is enough to note that for these to be the case we must
have that Sxx and Sxx. For (i) we know by the induction hypothesis that
M+ 6|=x τ��(B) (which is (ii)), and hence as Sxx that M+ 6|=x ��τ��(B).
For (iii) we note that by the induction hypothesis this would mean that
M+ 6|=y τ��(B), and hence as this point is 2 S-steps away from x that
M+ 6|=x ��τ��(B). As all three cases lead to a contradiction we can con-
clude thatM+ |=x ��τ��(B).

Theorem 2.1.5. For all formulas A and all points x ∈W we have.

M |=x A if and only ifM+ |=x τ��(A).

Proof. By induction on the complexity of A, the only case of interest being
in the inductive step where A = �B.
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For the ‘only if’ direction suppose that M |=x �B. So it follows that
for all points y ∈ R(x) thatM |=y B. By the induction hypothesis we have
that M+ |=y τ��(B). Suppose, then, that is is not the case that x is re-
flexive. Then we know that R(x) = S(x), and thus that M+ |=x �τ��(B).
In this case as x is reflexive exactly when x is we know that S(x) = x,
and thus that M+ |=x ��τ��(B) as desired. Suppose now that x is re-
flexive. Then we know that Sxx and hence that Rxx, and thus by the in-
duction hypothesis that M+ |=x τ��(B). By Lemma 2.1.4 it follows that
M+ |=x τ��(B), and hence thatM+ |=x �τ��(B). As S(x) = {x,x}, and both
of these points validate τ��(B) it follows that M+ |=x �τ��(B), and thus
thatM+ |=x ��τ��(B).

Suppose now for the ‘if’ direction thatM 6|=x �B. Then there is some
point y ∈ R(x) such that M 6|=x B. By the induction hypothesis it follows
that M+ 6|=y τ��(B). As y ∈ R(x) it follows that y ∈ S(x) and hence that
M+ 6|=x �τ��(B). As Rxx it thus follows thatM+ 6|=x ��τ��(B) as desired.

It is easy to show that the modality �� is normal in K. This fact, cou-
pled with the above result allows us to show the following.

Theorem 2.1.6. K is iterative (i.e. K(��) = K).

In fact, the above model construction has one very useful advantage
over that given in Humberstone [2006]. The model construction there
took a reflexive model and transformed it into a model where S2 was re-
flexive. What our construction does though is take a reflexive model and
transform it into a reflexive model. Thus, using the above Theorem and
the fact that τ��(�A→ A) ∈KT allows us to conclude the following.

Corollary 2.1.7. KT is iterative (i.e. KT(��) = KT).

Corollary 2.1.8. KD is iterative (i.e. KD(��) = KD).
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2.1.1 Modal-to-Modal Translations and Philosophy:

Some Examples

In this section we will provide some examples motivating the relevance of
translations to questions in philosophy.

2.1.1.1 Epistemic Logic: Knowledge and Subjective Certainty

In Hintikka [1962] we are presented with arguments to the effect that the
correct logic of knowledge is at least as strong as S4, and it is within the
culture of these arguments in that the following discussion is set. Most
work on attempting to determine the correct formal theory of knowledge
and belief considers the formal properties of knowledge and belief in iso-
lation – trying to determine the correct logics of these notions indepen-
dently. One might argue, though, that our understanding of both of these
concepts arise mostly out of the way in which they interact. Given this,
one way for us to determine the correct formal theory of knowledge and
belief is to consider the formal properties and interactions between them.
Given this, consider the following interaction principles laid out in Stal-
naker [2006].

(P I) Bp→ KBp Positive Introspection

(NI) ¬Bp→ K¬Bp Negative Introspection

(KB) Kp→ Bp Knowledge implies Belief

(CB) Bp→¬B¬p Consistency of Belief

(SB) Bp→ BKp Strong Belief.

The concept of belief intended here is that of “subjective certainty” –
called ‘conviction’ in Lenzen [1979]. That is to say, we are interpreting Baϕ
(agent a believes that ϕ) as meaning that P roba(ϕ) = 1 – where P roba is a’s
subjective probability function. Sis the normal modal logic containing



44 CHAPTER 2. A TAXONOMY OF TRANSLATIONS

(PI), (NI), (KB), (CB), (SB) as well as T and 4 for the K-operator. 7 Then
we can note the following property of our combined doxastic/epistemic
logic.

Proposition 2.1.9.

Bp↔¬K¬Kp ∈ S (2.11)

Proof. The ‘→’ half follows from (SB), (CB) and (KB), and the ‘←’ half
follows from (KB) and (NI).

This gives us a way of defining the belief operator in terms of our
knowledge operator. Replacing Bp with ¬K¬Kp in (CB) also reveals that
the following additional principle must be valid in our resulting logic of
pure knowledge (the K-fragment of S).

¬K¬Kp→ K¬K¬p

This is the K version of the G axiom, and it can be shown that the result
of adding this as an axiom to S4 is the knowledge fragment of S.

Proposition 2.1.10. S4G (=S4.2) is the epistemic fragment of S.

Given the above two results then we can now determine what the logic
of the doxastic fragment of S is – namely it will be the {¬K¬K,→,¬}-
fragment of S4G. That is to say, the unique normal modal logic S such
that A ∈ S if and only if τ(A) ∈ S4G – where τ(Bϕ) = ¬K¬Kτ(ϕ). It is easy
to see that the doxastic fragment of S is going to be at least as strong as
the logic KD45 – 4 and 5 following from (P I) and (NI) respectively using
(KB). Thus, as the doxastic fragment of S is faithfully embedded into S4G
by τ we have the following.

Theorem 2.1.11. A ∈KD45 if and only if τ(A) ∈ S4G where τ(Bϕ) = ¬K¬Kτ(ϕ).

7That is to say, in addition to the above principles we have K(p → q)→ (Kp → Kq),
Kp→ p and Kp→ KKp as theorems.
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One of the most famous combined principles of knowledge and be-
lief is the idea that knowledge is equivalent to true belief. It is generally
thought that this concept of knowledge over generates, in the sense that it
counts as instances of knowledge things which the agent does not know.
Consequently we can think of the epistemic fragment of S extended by the
following principle as giving us a hard upper bound on what our formal
theory of knowledge could be.

(KTB) Kϕ↔ Bϕ ∧ϕ.

The ‘only if’ direction of the above biconditional is already provable in S

by (KB), T and the definition of B above. Thus, we can provide a more eco-
nomical axiomatization of this logic of knowledge as the epistemic frag-
ment of S by Bϕ ∧ϕ→ Kϕ. By the definition of B given above this forces
our epistemic fragment to prove the following formula.

.4 : ϕ ∧¬K¬Kϕ→ Kϕ

This tells us that the logic of knowledge as true belief, where belief is taken
to be subjective certainty is none other than the normal modal logic S4.4.
Thus, for reasons outlined above, we can think of S4.4 as being a maximal
epistemic logic compatible with taking belief as subjective certainty – i.e.
no proper extension of S4.4, construed as an epistemic logic, is compatible
with belief being subjective certainty.8 Proposition 2.1.10 by contrast tells
us that the smallest logic of knowledge where belief is taken as subjective
certainty is the normal modal logic S4.2. Consequently we are left with a
partial characterization of the admissible epistemic logics if we take belief
as subjective certainty – namely those modal logics extending S4.2 which
do not extend S4.4.9

8This result is rendered in more detail in Theorem 4.2.18
9This much more cautious way of phrasing things here is due to comments of S. Kuhn.

Previously the author had written that the above results show that S4.4 is the strongest
epistemic logic compatible with this construal of belief, and that this meant that all ad-
missible epistemic logics were in the interval between S4.2 and S4.4. This, while being
how these results are reported in Lenzen [1978], does not clearly follow from the above.
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2.1.1.2 Alethic Modal Logic: Metaphysical Necessity and Actuality

The most commonly accepted modal logic of metaphysical necessity is the
normal modal logic S5.10 From a semantic point of view, S5 corresponds
to the notion of metaphysical necessity as truth in all possible worlds. The
most prominent opponent to this orthodox view is Nathan Salmon, who in
Salmon [1989] has argued that there are counterexamples to the S5 prin-
ciples for metaphysical necessity arising over the constitution of artefacts.
Salmon argues that those who find S5 to be a compelling logic of meta-
physical necessity are confusing necessity with actual necessity – what is
necessary according to the actual world. Let τA� by the translation which
replaces all occurrences of � within a formula it is applied to with A�.
Then, in order for Salmon to be correct one thing we would have to be
able to show is that the set of all formulas τA�(A) is some system of modal
logic S which proves neither 4 or 5 is exactly S5. What we will now show
is that there is such a logic, before going on to use this argument to assess
Salmon’s argument.

Let KT@ be the normal bimodal logic containing two operators � and
A axiomatized by the following axioms, with modus ponens, uniform sub-
stitution, and necessitation for � and A (‘actualization’) as its sole rules.

K : �(p→ q)→ (�p→�q)

T : �p→ p

KA : A(p→ q)→ (Ap→ Aq)

A1 : A¬p↔¬Ap
4A : Ap→ AAp

A2 : Ap→�Ap

As stated in Williamson [1998], KT@ corresponds to an interpretation of
A on which Ap is true at a world w just in case p is true at a fixed world w∗.
The theorems of KT@ are those which are valid on all frames 〈W,R,w∗〉

10The following example is taken from Williamson [1998].
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when A is interpreted in this way. That is to say, in the terminology of
Humberstone [2004], KT@ is the class of formulas which are generally
valid on the class of all reflexive frames 〈W,R,w∗〉. By contrast KT@S,
the smallest modal logic extending KT@ containing all instances of the
formula Ap→ p, is the class of all formulas which are real-world valid on
all reflexive frames 〈W,R,w∗〉 – i.e. the class of all formulas A such that,
for all reflexive models we have 〈W,R,w∗,V 〉 |=w∗ A.

What we will now show is that {A|τA�(A) ∈ KT@S} = S5 – i.e. that τA�
faithfully embeds S5 into KT@S.

Proposition 2.1.12. For all formulas A we have the following.

A ∈ S5 only if τA�(�A) ∈KT@.

Proposition 2.1.13.

τA�(�A)→ τA�(A) ∈KT@S.

Proof. As KT@S contains all formulas of the form Ap→ p, we know that
A�τA�(A)→�τA�(A) ∈KT@S, and hence by T that A�τA�(A)→ τA�(A) ∈
KT@S.

Theorem 2.1.14 (Williamson [1998]). For all formulas A we have the follow-
ing.

A ∈ S5 if and only if τA�(A) ∈KT@S.

Proof. For the ‘only if’ direction suppose that A ∈ S5. Then by Proposition
2.1.12 we know that τA�(�A) ∈ KT@, and thus by Proposition 2.1.13 that
τA�(A) ∈KT@S.

For the ‘if’ direction suppose that A < S5. By the soundness and com-
pleteness of S5 w.r.t the class of all universal models we know that there
is a universal modalM = 〈W,R,V 〉 and a point x ∈W such thatM 6|=x A.
Singling out x as the actual world we get a model for KT@S in which A is
still false and in which A↔ τA�(A) is valid. Hence we can conclude that
〈W,R,x,V 〉 6|=x τA�(A) and thus that τA�(A) <KT@S.
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We cannot show the above result with KT@ replacing KT@S – the
translation failing in the ‘only if’ direction – A�p→ p not being a theorem
of KT@, this being the τA�-translation of the T axiom. As the theorems
of KT@S are those which are ‘real world valid’ on reflexive frames, it ap-
pears as if the above argument concerning the confusion of necessity and
actual necessity relies on us thinking of our candidate metaphysical modal
logic(s) as characterizing the behaviour of metaphysical necessity accord-
ing to the actual world. But surely when we are talking about S5 being
the logic of metaphysical necessity we are claiming that it characterizes
metaphysical necessity in a less world-relative manner. That is to say, the
success of Salmon’s argument seems to rest on whether one thinks that we
should characterize metaphysical necessity in terms of real-world valid,
or generally valid formulas. If instead we were to characterize metaphysi-
cal necessity in terms of the generally valid formulas, then we would end
up with KT@ as our preferred source logic, and the embedding would no
longer be faithful. What Salmon’s argument seems to suggest, then, is that
people who think that S5 is the logic of metaphysical necessity had better
be characterizing their logics in terms of general validity.



III

The Range of Translations

Given the definition of what it is for a translation τ for faithfully embed a
logic S into a logic S′ there are three different elements which we can vary
– we can (i) vary the translation τ , (ii) vary our source logic S or (iii) vary
our target logic S′. Indeed, it is very natural to wonder whether there is
anything interesting to be said about each of these options, both in general
terms and for specific choices of translation, source and target logic.

Option (i), where we vary our translation and keep our source and tar-
get logic fixed, asks us for which translations τ can we faithfully embed S

into S′. For specific logics we can have some interesting things to say about
this (we will find an example of this phenomenon in our discussion of the
logic of action), but in the general case the only time we can say something
interesting about this situation is when the answer is ’none’. For example
we can show that for no modal-to-modal translation τ can we faithfully
embed K into KT.

Theorem 3.0.15 (Humberstone [2005a]). No modal-to-modal translation faith-
fully embeds K into KT.

49
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Proof. Suppose, for a reductio, that τ faithfully embeds K into KT. Then
as 3> ∨�⊥ ∈ K it follows that τ(3> ∨�⊥) ∈ KT. As τ is a modal-to-
modal translation this means that τ(3>)∨ τ(�⊥) ∈ KT. As KT is Halldén
complete1 then it follows that either τ(3>) ∈ KT or τ(�⊥) ∈ KT. But
neither of 3> nor �⊥ are K-theorems, and hence by reductio there is no
such translation τ .

The above Theorem is an instance of a more general result that for any
translation for which τ(A∨B) = τ(A)∨τ(B) that τ faithfully embeds S into
S′ only if whenever S′ is Halldén complete, S is too.

Option (ii), where we vary our source logic and keep our translation
and target logic fixed, asks us which source logics S can be faithfully em-
bedded into S′ by τ . This question has a general answer, albeit a not very
interesting one. We know that, for all choices of target logic S′ and trans-
lation τ that if there is a source logic S which can be faithfully embed-
ded into S′ by τ , then there is only one such logic – namely the logic
{A|τ(A) ∈ S′}. If we are dealing with compositional and variable-fixed
translations then it is clear that this set will be a logic whenever S′ is – as
σ ′(A) will be in the set whenever σ (τ(A)) is in S′, where σ (pi) = τ(σ ′(pi)),
this fact following from Theorem 2.0.20. So, for example, we can show
that if S′ is a modal logic and τ a modal-to-modal translation then the set
{A|τ(A) ∈ S′} will always be a logic, but in general we are not assured of
such. Moreover, here we are not assured that the logic in question will
be a modal logic – as we are not assured that all the classical tautologies
will be in the set. So we can see that the more interesting problem here is
determining properties of the logic {A|τ(A) ∈ S′}.

Option (iii), where we keep our source logic and translation fixed while
varying our target logic, asks us what logics our source logic S can be
faithfully embedded into by τ . This option, it turns out, is by far the most
interesting in the general case – as there are often a set of logics S′ which

1A modal logic S is Halldén complete iff whenever A ∨ B ∈ S, where A and B do not
share a propositional variable, either A ∈ S or B ∈ S.



51

S can be faithfully embedded into by τ . Not only this though, but we can
show that this set is endowed with certain algebraic properties under the
usual ordering relation. What we will look at in this chapter is what we
can say about this option for abstracting our definition of what it is for one
logic to be faithfully embedded into another, focusing in particular on the
structures formed by such sets of logics under the partial ordering ⊆.

Let us begin by establishing some terminology. Consider the following
relation between logics – for a given choice of translation τ .

S′ ≡τ S′′ =Df for all formulas A: τ(A) ∈ S′ ⇐⇒ τ(A) ∈ S′′. (3.1)

Let us say that two logics S′ and S′′ are τ-equivalent whenever S ≡τ S′.
It is easy to see that the set of logics into which a given logic S can be
faithfully embedded by a translation τ is the τ-equivalence class of logics
Γ , such that S′ ∈ Γ only if τ faithfully embeds S in S′.Let us denote this
set of logics Ran(τ,S) – calling it the range of τ for S. Additionally, let
us denote by NRan(τ,S) the set of normal modal logics in Ran(τ,S). The
nomenclature here is chosen to bring to mind the idea of the range of
a function – the set of output values produced by the function, in this
case being the set of (target) logics into which our translation faithfully
embeds our source logic. The similarity is rather coarse, but suggestive
nonetheless.

The main question with which we will be concerned in this chapter
is what can be said about the range of a translation τ for a given source
logic S. In particular our focus will be on determining what can be said
about the structure formed by the set Ran(τ,S) (NRan(τ,S)) and the usual
ordering ⊆. In doing this it will be useful to be clear on some terminology
involving sets and relations on them. Let X be a nonempty set and > a
partial order on X. Then an element x ∈ X is minimal in X if for all y ∈ X,
if x ≥ y then x = y. An element is x ∈ X is the minimum of X if for all y ∈ X
x ≤ y. Similarly, an element x ∈ X is maximal in X if for all y ∈ X, if x ≤ y
then x = y, and is the maximum of X if for all y ∈ X, y ≤ x. Note that all
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minimum elements are minimal elements, and all maximum elements are
maximal, but not conversely.

Results of this nature exist most prominently in the literature concern-
ing the modal companions of intermediate logics. The objects of study
here are the translations which faithfully embed IL (Intuitionistic Logic)
into the normal modal logic S4. In particular consider the translation T
due to Gödel.2

T (pi) = �pi

T (A∨B) = �(T (A)∨ T (B))

T (A∧B) = �(T (A)∧ T (B))

T (A→ B) = �(T (A)→ T (B))

T (¬A) = ¬3T (A).

From this literature it is known that the minimal normal modal logic
into which IL can be faithfully embedded by T is S4, and the maximal
such logic is S4Grz – the normal extension of S4 by the formula Grz (=
�(�(p→�p)→ p)→ p).

That is to say, the normal modal logics into which IL can be faithfully
embedded by T are all those logics in the interval [S4,S4Grz]. This re-
sult is a paradigm case of the kinds of result which we will be primarily
concerned with in this chapter. Results of this nature in the modal logic
literature are rare. In Shavrukov [1991] we are told what the maximal
logic extending GL into which the translation τ� faithfully embeds Grz is.
When combined with the results in Litak [2007] this allows us to start to
get a very vague picture of what the structure of NRan(τ�,Grz) might be
– which we will go into later this chapter. The most complete example of
this kind of reasoning present in the literature is Goris [2007], where we

2For more information on Intermediate Logics and translational embeddings between
them and extensions of S4 (known in this literature as ‘Modal Companions’) the reader
should consult the survey article Chagrov & Zakharyashchev [1992]. More recent results
in this field can also be seen in Muravitsky [2006].
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are shown what the structure of NRan(τ�,S5) and NRan(τ�,S4.4) are.

One obvious question to ask when presented with the characteristic
function for a set is whether we can determine conditions under which
that set will be nonempty. In this case the characteristic function we have
been presented with is “being a logic into which S can be faithfully em-
bedded by τ”, this being the characteristic function for the set Ran(τ,S).
As such we want to know whether we can give some condition or condi-
tions under which we can be assured that Ran(τ,S) is non-empty. The first
thing to notice in doing this is that it is not the case that the range of τ
for S will always be non-empty. To see this consider the range of τ� for K.
As every modal logic proves the formula (p∧�p)→ p (this being a substi-
tution instance of the classical theorem (p ∧ q)→ p), and as this formula
is τ�(�p → p) in order for Ran(τ�,K) to be nonempty ‘�p → p’ would
have to be a K-theorem. As it is not we can conclude that Ran(τ�,K) = ∅.
Moreover, this observation will hold for any extension of K which does not
include T amongst its theorems.

Are there any conditions under which the range of a translation will be
nonempty? One good place to start is in considering the smallest modal
logic containing τ(A) for every S-theorem A, which is to say the logic L +
τ(S). A necessary and sufficient condition for Ran(τ,S) to be non-empty
is that τ faithfully embeds S into L + τ(S). What this means is that the
smallest modal logic containing τ(A) for every S-theorem A, contains no
formula τ(B) for which B < S.

For reasons of expository simplicity, for the remainder of this chapter
will be dealing with sets Ran(τ,S) which are non-empty.

3.1 The Minimum Logic

Suppose that we have established that Ran(τ,S) is non-empty. An obvious
thing for us to ask is whether it contains a minimum element. If there was
to be such a least member a good initial candidate would be the logic L +
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τ(S) mentioned above. In fact, as we will now show, this is the minimum
logic within R(τ,S).

Theorem 3.1.1. For all modal logics S′, if S is faithfully embedded into S′ by
τ , then L + τ(S) ⊆ S′.

Proof. Suppose that τ embeds S into a logic S′ faithfully. Then S′ proves
all of the formulas in τ(S). Additionally, as S′ is a modal logic it will also
prove all the formulas in L+τ(S), and thus we can see that L+τ(S) ⊆ S′.

Thus we can see that, whenever the range of a translation is non-empty
that it has a least member. What we would really like though is a set of
axioms and rules which characterize this least member. It is reasonably
clear from the construction of L + τ(S) that, if S is a modal logic given
in terms of some set of axioms A1, . . . ,An along with the rules of Modus
Ponens and Uniform substitution then L+τ(S) can be given in terms of the
axioms τ(A1), . . . , τ(An) along with the rules of Modus Ponens and Uniform
Substitution.

What aboutNRan(τ,S)? As above it is fairly easy to see thatNRan(τ,S)
will be nonempty iff it contains the logic K ⊕ τS – the minimum normal
modal logic extending τS. This logic can be given axiomatics similar to
that of L + τ(S), except that we will now also have the additional axiom K
as well as the rule of necessitation.

3.1.1 Example: The minimal logic in NRan(τ��,KDc)

Throughout this chapter we will investigate, as a working example, the
structure of NRan(τ��,KDc) – where τ�� is the modal translation such
that τ��(�A) = ��τ��(A). We will begin here by determining what the
minimal logic in this range is. To that end consider the following formula.

KD2
c : 33p→��p.
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It is easy to see that KD2
c is determined by the class of all frames 〈W,R〉

where R2 partially functional. What is perhaps more interesting is that
all of the generated frames for KD2

c are very easily describable. Given
a frame generated by a point w – F = 〈W,R〉 – and a set of points Cn =
{x,y1, . . . , yn} such that W and Cn are disjoint, let us denote by fCn(F) the
following frame.

• WCn :=W ∪Cn

• RCn := R∪ {〈x,yi〉,〈yi ,w〉|1 ≤ i ≤ n}.

What we can quite easily show is that all the generated frames for KD2
c

are either generated frames for KDc, or fCn(F) for some generated frame
for KDc.

Definition 3.1.2. Given a model M = 〈W,R,V 〉 let us define the set of
points I = {I(x,y)|〈x,y〉 ∈ R}. Construct the modelM∗ = 〈W ∗,R∗,V 〉 as fol-
lows.

• W ∗ :=W ∪ I

• R∗ := {〈x, I(x,y)〉|〈x,y〉 ∈ R} ∪ {〈I(x,y), y〉|〈x,y〉 ∈ R}.

The above model construction takes a model, and puts intermediary
points between R-related points. Note the similarity between this con-
struction, used in Pelletier & Urquhart [2008] and Kuhn [2004], and the
related construction seen in Chapter 2 inspired by a similar construction
in Humberstone [2006].

Lemma 3.1.3. LetM = 〈W,R,V 〉 be a Kripke model. Then for all formulas A
and points x ∈W we have the following.

M |=x A if and only ifM∗ |=x τ��(A).

Proof. By induction upon the complexity of A, the only case of interest
being that in the inductive step where A = �B for some formula B.
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For the ‘only if’ direction suppose thatM |=x �B. Then for all y ∈ R(x)
we know thatM |=y B. By the inductive hypothesis it follows thatM∗ |=y
τ��(B) for all such points y. As Rxy we know that RxI(x,y) and RI(x,y), y
and thus thatM∗ |=x ��τ��(B) as desired.

For the ‘if’ direction suppose thatM∗ |=x ��τ��(B). Then for all points
y such that R∗xy we have that M∗ |=y �τ��(B), and thus for all points z
we know that M∗ |=z τ��(B). By the inductive hypothesis we know that
M |=z B. By the construction of R∗ we know that all such points y are of
the form I(x,z) for some points z ∈ W – and thus that Rxz for all such
points z, from which it follows thatM |=x �B as desired.

Theorem 3.1.4. For all formulas A we have the following.

A ∈KDc if and only if τ��(A) ∈KD2
c .

Proof. The ‘only if’ direction proceeds by induction upon the length of
derivations of A in KDc. The only case of interest being the basis case
where A is an instance of Dc. In this, we know that τ��(Dc) is provable
in KD2

c , and thus – by taking the appropriate substitution instance of D2
c

that τ��(A) ∈KD2
c .

For the ‘if’ direction suppose that A < KDc. Then there is a partially
functional modelM = 〈W,R,V 〉 and a point x ∈W such thatM 6|=x A. By
Lemma 3.1.3 we know thatM∗ 6|=x τ��(A) and thus, as this is a model for
KD2

c that τ��(A) <KD2
c .

All we have done so far is show that KD2
c ∈ NRan(τ��,KDc). What we

will now proceed to show is that it is the minimum such logic.

Theorem 3.1.5. KD2
c is the minimum logic in NRan(τ��,KDc).

Proof. Suppose that S ∈ NRan(τ��,KDc). Then we know that S is nor-
mal, and also proves τ��(3p→ �p) = 33p→ ��p. Thus, as KD2

c is the
smallest normal modal logic which proves 33p → ��p we can see that
S ⊇KD2

c , and the result follows.
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3.2 Maximal Logics

While the problem of determining what the minimal logics within the
range of a translation is for a given source logic is relatively simple – there
in fact always being a minimum element whenever Ran(τ,S) is non-empty,
the problem of finding maximal logics is somewhat harder – further com-
plicated by the fact that there is no guarantee that there will be only one
such logic. What we will show in this section though are some results and
general approaches which can be helpful when trying to determine the
maximal logics within the range of a translation. It will be useful in what
follows to have some terminology to talk about the maximal logics within
the range of a translation. For this reason let us introduce the following
terminology. Let max(Ran(τ,S)) (resp. max(NRan(τ,S))) be the smallest
set ∆ ⊆ Ran(τ,S) (resp. ∆ ⊆ NRan(τ,S)) such that if S′ ∈ Ran(τ,S) (resp.
S′ ∈NRan(τ,S)) then S′ ⊆ S′′ for some logic S′′ ∈ ∆.

We will begin by giving a condition which, when satisfied by a logic S

for a translation τ , is sufficient for S being maximal in Ran(τ,S).

We will begin by giving a condition upon our source logic which is
sufficient for it being maximal. This result applies not only to modal-to-
modal translations, but also to any translation where the source and target
logics share the same propositional language.

Theorem 3.2.1. Suppose that τ fulfils the following condition:

`S τ(A)↔ A.

Then S is a maximal logic into which S can be faithfully embedded via τ .

Proof. First we note that it is trivial to show that any translation fulfilling
the condition above can faithfully embed S into S.

To show that S is maximal, suppose for a contradiction that there is a
logic S′ such that S′ ) S such that S is faithfully embedded into S′ by τ .
As S′ ) S there is some formula A ∈ S′ such that A < S. By the above inset
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condition then we know that τ(A) ∈ S′, and thus by the faithfulness of the
translation that A ∈ S, giving us a contradiction.

This result allows us to conclude the following.

Theorem 3.2.2. KT is maximal in Ran(τ�,KT).

Proof. Follows by Theorem 3.2.1, and the fact that KT is congruential and
proves (�p∧ p)↔�p.

We will have more to say about the above result (that KT is maximal
in NRan(τ�,KT)) at the end of the next chapter, where we consider the
question of whether KT is in fact the maximum logic in this range.

3.2.1 Example: KDc is maximal in NRan(τ��,KDc)

What we will show here is that KDc is maximal within NRan(τ��,KDc).
To do this we will show that every proper normal extension of KDc proves
the τ��-translation of some formula A such that A is not KDc-provable.
First we will require some results from Segerberg [1986] concerning the
normal extensions of KDc. Let Cn be the following formula, named for
Brian Chellas.

Cn : �n3>.

Proposition 3.2.3. For all n ∈Nat, τ��(Cn) ∈KDcCn.

Proof. First note that (3> ∧�3>) → 33> ∈ K, and hence by repeated
applications of RR we have that (�2n3>∧�2n�3>)→ �2n33> ∈ K. By
repeated applications of the rule of necessitation applied to Cn we have
that �2n3> and �2n�3> are both theorems of KDcCn, and thus by Modus
Ponens that �2n33> ∈KDcCn. As this is just the τ��-translation of Cn the
result follows.

Proposition 3.2.4. For all n ∈Nat, KDcCn <NRan(τ��,KDc).
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Proof. Follows by Proposition 3.2.3 and the fact that Cn is not a theorem
of KDc.

Proposition 3.2.5. Suppose that S is a proper normal extension of KDc. Then
KDcCn ⊆ S for some n ∈Nat

Proof. By Lemma 2.7 and 2.8 of Segerberg [1986].

Theorem 3.2.6. KDc is maximal within NRan(τ��,KDc).

Proof. By Proposition 3.2.5 we know that every logic KDc ( S is an exten-
sion of one of the logics KDcCn for some n ∈ Nat. By Proposition 3.2.4
it follows that KDcCn proves τ��(A) for some formula A < KDc. Thus, as
KDcCn ⊆ S it follows that τ��(A) ∈ S and hence S <NRan(τ��,KDc).

What we have shown so far is that KDc is one of the maximal logics in
NRan(τ��,KDc), leaving it open as to whether there are any other maxi-
mal logics within the range. What we will do now is show that if there are
any such logics, that they are not determined by a class of Kripke frames
– this being at least partial inductive evidence that KDc is the maximum
logic within the range.

Let βn = 〈Wn,Rn〉 be the following frame taken from Segerberg [1986,
p.506].

• Wn := {i|i < n},

• Rn := {〈i, i + 1〉|i < n− 1}.

Lemma 3.2.7. Suppose that KD2
c ⊆ S is Kripke-complete. Then if βn < Fr(S)

then ¬(3n+2�⊥) ∈ S.

Proof. Suppose for a contradiction that βn < Fr(S) and that ¬(3n+2�⊥) <
S. Then there is a model M = 〈W,R,V 〉 and a point x ∈ W such that
M |=x 3n+2�⊥. So there is are points y,z ∈W such that Rxy and Ryz and
M |=z 3n�⊥. It is easy to see that the frame of the model generated from
M at z is partially functional, and hence is simply βn – contradicting out
hypothesis.
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Theorem 3.2.8. For all Kripke-complete normal modal logics S we have the
following.

S ∈NRan(τ��,KDc) if and only if S ⊆KDc.

Proof. For the ‘if’ direction suppose that S * KDc. So we know that for
some point generated finite frame F ∈ Fr(KDc) that F < Fr(S). As all the
point generated finite frames for KDc are of the form βn for some n ∈ Nat
it follows that βn < Fr(S) for some n ∈ Nat. Thus by the above Lemma
we know that ¬(323n−1�⊥) ∈ S – that is �n+13> ∈ S. Thus it follows
that S ⊇ KDcCn+1, and thus by Proposition 3.2.3 that τ��(Cn+1) ∈ S. As
Cn+1 <KDc it follows then that S <NRan(τ��,KDc).

The ‘only if’ direction is routine.

3.3 The Structure of the Range of a Translation

Given that we have now shown how to determine (in at least some limited
cases) what the minimal and maximal logics into which a given logic S can
be faithfully embedded by a translation τ , we will now examine some of
the broader structural properties of the range of a translation.

The first thing which we might want to know is what kind of struc-
ture the range of a translation forms under the obvious partial ordering ⊆.
Given that the set of all modal logics forms a lattice under ⊆ this would be
an obvious place to start.

Proposition 3.3.1. Ran(τ,S) is closed under intersections.

Proof. Suppose that S′ and S′′ are in R(τ,S), with a view to showing that
their intersection S′∩S′′ is in R(τ,S) also. Firstly ifA ∈ S then τ(A) ∈ S′ and
τ(A) ∈ S′′ and consequently τ(A) ∈ S′ ∩ S′′. If τ(A) ∈ S′ ∩ S′′ then τ(A) ∈ S′

and τ(A) ∈ S′′ and thus A ∈ S as desired.

Corollary 3.3.2. NRan(τ,S) is closed under intersections.
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Thus it is very easy to see that the meet of any two logics within the
range of a translation is also within the range of that translation. The case
of joins though is far more problematic due to the fact that we can have
pairwise incomparable maximal modal logics with the range of a transla-
tion – the following constituting a concrete counterexample to the range
of a translation being closed under join, where the join of two modal logics
S and S′ is the smallest modal logic S′′ such that S ⊆ S′′ and S′ ⊆ S′′.

Example 3.3.3. Consider the join of the two logics KD45 and S4.4 in the
range of τ3� for KD45. This logic, which turns out to be the normal modal
logic S5,3 contains all of the theorems of KD45 and S4.4 and is closed
under Modus Ponens. Consequently, as 3�p → �p ∈ KD45 and �p →
p ∈ S4.4 it is clear that 3�p→ p will be in their join. But this is the τ3�-
translation of the KD45-unprovable formula �p→ p, and thus this logic
cannot be in Ran(τ3�,KD45).

This does not mean that the range of a translation can never be closed
under joins – what we are trying to determine here is what can be said
about the structure of Ran(τ,S) and NRan(τ,S) in general. As it happens
one of our examples (NRan(τ�,KT!)) forms an interval – and thus is closed
under both meets and joins. In general though we can conclude the fol-
lowing.

Proposition 3.3.4. Ran(τ,S) forms a bounded meet semi-lattice with 0 = L +
τS.

Proposition 3.3.5. NRan(τ,S) forms a bounded meet semi-lattice with 0 =
K⊕ τS.

An additional structural property, which is of practical use, is the fol-
lowing convexity result.

3This is an instance where even when we just take the smallest modal logic which
contains all the theorems of two logics, we nonetheless end up with a normal modal
logic.
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Theorem 3.3.6 (Convexity). For all logics S′ such that S0 ⊆ S′ ⊆ S1 – where
S can be faithfully embedded into both S0 and S1 by τ – we have that:

A ∈ S if and only if τ(A) ∈ S′.

Proof. The ‘only if’ direction follows from the fact that for all A ∈ S, τ(A) ∈
S0. Hence, as S′ ⊇ S0, τ(A) ∈ S′.

The ‘if’ direction follows from the fact that, for all τ(A) ∈ S1, A ∈ S.
Hence if τ(A) ∈ S′, then as S1 ⊇ S′ we know that τ(A) ∈ S1 and thus that
A ∈ S.

What the above results allow us to show is that NRan(τ,S) will have
a particularly uniform structure. From Theorem 3.1.1 we know that – so
long asNRan(τ,S) , ∅ – there will be a minimum logic in the set. By Zorn’s
Lemma we know that there will be some non-empty set of maximal logics
within the range (max(NRan(τ,S))), and lastly by Theorem 3.3.6 that all
the logics within NRan(τ,S) will be the extensions of the minimal logic
which are sublogics of the logics in max(NRan(τ,S)). That is to say, the
structure of the range of a translation τ over a source logic S is uniquely
determined by the minimum logic, and the set max(NRan(τ,S)).

This general structure of the range of a translation leaves a number
of degenerate cases. One of these degenerate cases we covered at the be-
ginning of the chapter, namely that where NRan(τ,S) = ∅. What we will
do now is briefly consider another one of the degenerate cases – where
NRan(τ,S) = {S}. Consider the translation τ�D which τ�D (2A) = 2Dτ�D (A)
where 2DA = 2A∧3A. Let EN be the smallest congruential modal logic
containing the formula �>.

Proposition 3.3.7. If S(2D) ⊇ EN then 3> ∈ S.

Proof. S(2D) ⊇ EN implies that �> ∈ S(2D), which means that 2D> ∈ S
i.e. 2>∧3> ∈ S – from which it follows that 3>S.

Theorem 3.3.8. KD is maximal in NRan(τ�D ,KD).
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Proof. Follows from the fact that 2DA↔2A ∈KD.

Theorem 3.3.9. NRan(τ�D ,KD) = {KD}.

Proof. Suppose that S ∈NRan(τ�D ,KD). Then as KD ⊇ EN it follows from
Proposition 3.3.7 that 3> ∈ S – i.e. that S ⊇ KD. By Theorem 3.3.8 we
know that KD is maximal – and hence it follows that NRan(τ�D ,KD) =
{KD}.

3.3.1 A Strengthening of the Notion of the Range of a Trans-

lation

Let T r be a translation, like T at the beginning of this chapter, which
faithfully embeds IL into a modal logic S. In Chagrov & Zakharyashchev
[1992, p.71] a modal logic S is said to be a strong normal T r-companion of
IL whenever, for all intuitionistic formulas A and sets of formulas Γ we
have:4

A ∈ IL + Γ if and only if T r(A) ∈ S⊕ T r(Γ ). (3.2)

Therein the question is raised as to what happens when, instead of
merely considering the normal modal companions of IL, we instead con-
sider what its strong normal modal companions are. It is well known, for
example, that when we consider the the strong normal T -companions of
IL that these are exactly the normal T -companions of IL, as shown in the
following result.

Theorem 3.3.10 (Muravitsky [2006]). For all normal modal logics M such
that S4 ⊕ T (Γ ) ⊆ M ⊆ Grz ⊕ T (Γ ), and all intuitionistic formulas A we have
the following.

A ∈ IL+ Γ if and only if T (A) ∈M.
4We can recover the notion of what it is to for a modal logic S to be a normal T r-

companion of IL simply by making Γ the empty set. That is to say, a normal T r-companion
of IL is simply a normal modal logic into which T r faithfully embeds IL.
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We will have some further partial comments to make about the situa-
tion concerning modal companions in a moment, but mostly mention this
as it raises an interesting question concerning a possible strengthening of
the notion of the range of a translation in modal logic.

Let τ be a modal-to-modal translation, and S a normal modal logic,
and define the set SNRan(τ,S) as the set of all normal modal logics S′

such that, for all formulas A and B we have the following:

A ∈ S⊕B if and only if τ(A) ∈ S′ ⊕ τ(B). (3.3)

The obvious question to ask at this point is in what ways will SNRan(τ,S)
and NRan(τ,S) differ? It seems intuitive to think that the notion cap-
tured by SNRan is in some sense stronger than that captured by NRan
– showing a kind of invariance under extensions of the source logic. On
the intermediate logic front we know that the two notions converge when
we consider the normal modal logics into which IL can be faithfully em-
bedded by the translation T mentioned earlier. If we just consider the
relationship between the S-companions and the strong S-companions of
IL these two properties diverge, where S is the following translations from
intuitionistic formulas to modal formulas.

S(pi) = �pi

S(A∨B) = S(A)∨ S(B)

S(A∧B) = S(A)∧ S(B)

S(A→ B) = �(S(A)→ S(B))

S(¬A) = �¬S(A).

In particular consider the logics S3 +Xi , where X0 = 3⊥, X1 = ��>,
X2 = �33⊥, and Xi+3 = 3Xi ∧3Xi+1∧¬3Xi+2. It is reported in [Chagrov
& Zakharyashchev 1992, p.71] that all of the logics S3 +Xi are modal S-
companions of IL, but that none of the logics S3+Xi for i ≥ 3 are strong S-
companions of IL. Whether there is a normal modal logic S and translation
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T r such that S is a T r-companion of IL, but not a strong T r-companion of
IL remains open.

We will now investigate what the structure of SNRan is for a simple,
and instructive case. Recall the following results.

Lemma 3.3.11 (Goris [2007]). NRan(τ�,S5) = [Kw4B,S5].

Proposition 3.3.12. Suppose that S ∈ NRan(τ�,S5). Then for all formulas A
and B we have the following.

A ∈ S5⊕B if and only if τ�(A) ∈ S⊕ τ�(B). (3.4)

Proof. The ‘if’ direction follows by induction upon the length of deriva-
tions of A.

For the ‘only if’ direction suppose that A < S5⊕B, and thus that τ�(A) <
S5 ⊕ B. Then as S5 ⊕ B also proves τ�(B), and thus S ⊕ τ�(B) ⊆ S5 ⊕ B, it
follows that τ�(A) < S⊕ τ�(B).

Examining the above proof we can see that one particular fact about
S5 is used in the above proof – namely that S5 is a maximal (indeed max-
imum) logic within NRan(τ�,S5) with the following property, for all for-
mulas A and B.

A ∈ S5⊕B if and only if τ�(A) ∈ S5⊕ τ�(B).

Given this, let us say that a logic S′ ∈ max(NRan(τ,S)) is strongly maximal
whenever it fulfils (3.3). Then we are in a position to state our general
result.

Proposition 3.3.13. Suppose that S′ ∈ NRan(τ,S), and that all the maximal
logics in NRan(τ,S) are strongly maximal. Then for all formulas A and B we
have the following.

A ∈ S⊕B if and only if τ(A) ∈ S′ ⊕ τ(B).
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Proof. The ‘if’ direction follows by induction upon the length of deriva-
tions of A.

For the ‘only if’ direction suppose thatA < S. Then, as S′ is inNRan(τ,S)
we know that there is some logic S′′ ∈ max(NRan(τ,S)) such that S′ ⊆ S′′.
Then as S′′ is strongly maximal we know that τ(A) < S′′ ⊕ τ(B), and conse-
quently that τ(A) < S′ ⊕ τ(B).

Corollary 3.3.14. Suppose that all of the maximal logics in NRan(τ,S) are
strongly maximal. Then SNRan(τ,S) =NRan(τ,S).

The above corollary gives us a partial answer to the question concern-
ing the difference between modal companions and strong modal compan-
ions in Chagrov & Zakharyashchev [1992]. If the maximal modal compan-
ions of IL relative to a translation T r are strongly maximal (relative to that
same translation), then nothing changes – the set of modal T r-companions
and the set of strong modal T r-companions will coincide. We leave open
the question as to what exactly can be said about the Range of a trans-
lation, intermediate or otherwise, whose maximal logics are not strongly
maximal.



IV

The Range of Translations: Examples

What we will do in this chapter is go through and give some further ex-
amples of the range of translations for a selection of translations/source
logic combinations which are of some independent interest – either from
a technical or philosophical perspective.

4.1 The Range of Translation for KT!

Let us consider an easy example where we can give the full range of a
modal translation τ . Recall that the logic KT! is the normal extension of
K by the following axiom schema.

T! : �A↔ A.

Rather than consider the range of a particular translation over KT! what
we will do now is look at the range of all translations τ∇ which replace �

with a linear modality ∇ =O1 . . .On with each Oi ∈ {3,�}. We will say that
the length of such a modality ∇ is n. The first thing worth noting is that the

67
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smallest normal modal logic into which KT! can be faithfully embedded
into is the following.

K∇! : K⊕∇p↔ p.

Theorem 4.1.1. K∇! is the smallest normal modal logic into which KT! can be
faithfully embedded by τ∇.

Theorem 4.1.2. K∇! * KVer for all modalities ∇ of length ≥ 1.

Proof. What we need to show is that K∇! is not valid on the singleton
irreflexive frame F = 〈{w},∅〉. Firstly suppose that O1 = �. Then we know
that F |=w ∇⊥ and also that F 6|=w ⊥. Secondly suppose that O1 = 3. Then
we know that F |=w �A while F 6|=w ∇�A, and the result follows.

Theorem 4.1.3. KT! is a maximal modal logic into which KT! can be faithfully
embedded by τ∇.

Proof. Follows from the fact that τ∇(A)↔ A ∈KT!.

Theorem 4.1.4. S ∈NRan(τ∇,KT!) if and only if K∇! ⊆ S ⊆KT!.

Proof. For the ‘only if’ direction suppose that S ∈ R(τ∇,KT!), and that S *
KT!. Then by Theorem 2 of Makinson [1971] we know that S ⊆KVer. But
as S ∈ R(τ∇,KT!) we know that S ⊇ K∇! – from which it would follow that
K∇! ⊆ KVer. But by Theorem 4.1.2 we know that this is not the case, and
so S ⊆KT!.

The ‘if’ direction follows trivially.

For example, let us consider the structure of R(τ��,KT!). In this case
the minimum logic within the range will be the normal modal logic KT2!
which is the normal extension of K by the formula T2!.

T2! : ��A↔ A.

This logic can be easily seen to be determined by the class of frames 〈W,R〉
where R2(x) = {x} for all x ∈ W . It is in this guise that it is easy to see
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that this logic is none other than the normal modal logic KBc, as noted in
Humberstone [2009].

Bc : A→3�A.

This is very easy to see from a model-theoretic point of view. To see that
this is the case syntactically first consider the following derivations which
can be extracted from Williamson [1996].

(1) ��A→33A T2!,K

(2) 33¬A∨33A (1),K

(3) 3> (2),K

(4) ��A→3�A (3),K

(5) A→��A T2!.

(6) A→3�A (4), (5),T F.

Now consider the following derivation of T2! from Bc.

(1) 3�> Bc,T F

(2) 3> (1),K

(3) �A→3A (2),K

(4) 3�A→33A (3),3−RM

(5) A→3�A Bc
(6) A→33A (4), (5),T F

(7) �A→3��A Bc
(8) ¬�A∨¬�¬��A (7),T F

(9) ¬�(A∧¬��A) (8),K

(10) ¬3�(A∧¬��A) (9),RN,K

(11) �3¬(A∧¬��A) (10),K

(12) �3¬(A∧¬��A)→¬(A∧¬��A) Bc
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(13) ¬(A∧¬��A) (11), (12),T F

(14) ¬A∨��A (13),T F

(15) A→��A (14),T F

(16) A↔��A (6), (15),T F

Thus we are able to conclude that KT2! = KBc, putting us in the position
to conclude (with the help of Theorem 4.1.4) the following.

Corollary 4.1.5. S ∈NRan(τ��,KT!) if and only if KBc ⊆ S ⊆KT!.

As it happens we are in a position to strengthen this result somewhat.
As KBc is a proper extension of KD! we know, by corollary 2.3 of Segerberg
[1986] that is is determined by a finite class of finite frames – in particular
by the frames F1 = 〈{x,y}, {〈x,y〉,〈y,x〉}〉 and F2 = 〈{x}, {〈x,x〉}〉. Further-
more, by corollary 2.3 we now that any consistent extension of KBc must
be characterized by a finite class of finite frames – which means it must
either be determined by F1 (which gives us KBc), or F2, which gives us T!.
Thus, as there are no logics properly between KBc and KT! we can change
the rhs of the above biconditional to “S ∈ {KBc,KT!}”. Here we have an
example (or more precisely a class of examples) where the set of normal
modal logics into which a given source logic can be faithfully embedded
by a given translation form an interval ordered under ⊆ – the minimum
such logic in this case being the one we have dubbed K∇!, and the maxi-
mum such logic being KT! itself. That is to say, to use the nomenclature
introduced earlier, the range of τ∇ over KT! (NRan(τ∇,KT!)) forms an in-
terval.

4.2 The Range of τ3� for KD45

This particular translation and source logic pair have some historical im-
port, typically used with regards to epistemic and deontic logic. The first
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such result is that of Dawson [1959], which concerns the problem of try-
ing to define a suitable deontic logic within the expressive resources of
an alethic modal logic. What Dawson found was that, if you consider the
modality ‘3�’ in the modal logic S4.2 as an abbreviation for a deontic
‘O’ operator, then the new operator fulfils all of the requirements given
by A.R. Anderson for being a suitable deontic operator.1 Later, in the
rather short note Thomas [1967], Ivo Thomas shows that the {3�,¬,→}-
fragment of S4.2 is the logic KD45. This short note also shows that the
translation which interprets �A as �A∧A (called τ� in Zolin [2000]) faith-
fully embeds the modal logic S4.4 into KD45.

Moving forward, we can see the same results cropping up again in-
dependently in Lenzen [1979], a paper concerned with epistemic logic.
The idea there was that we could use the modality ‘3�’ to define the be-
lief operator within our epistemic logic – in essence defining the set of
things an agent believes as those things which are compatible with what
he knows. Lenzen showed that if we defined belief in this way in the epis-
temic logic S4.42 then the correct doxastic logic turned out to be KD45.
This result, coupled with the result mentioned above about the translation
τ� faithfully embedding KD45 into S4.4 prompted Lenzen to believe that
S4.4 was the correct epistemic logic. These considerations were picked
up again quite recently in Stalnaker [2006], where an attempt is made to
characterize the various different concepts of knowledge given by the log-
ics between S4.2 and S4.4.

Another example of this translation in use is Byrd [1980], where an at-

1The requirements for a logic to be a suitable alethic modal logic are essentially that it
is an extension of KT which does not prove Tc(p→�p). The requirements for an operator
‘O’ to be a suitable deontic operator are essentially that the formula D is provable for ‘O’,
and that T is not thus provable. That is to say, given a modal logic S and a modal function
#, we can say that # is a suitable deontic operator if #p→¬#¬p ∈ S and #p→ p < S.

2S4.4 is also mentioned in the footnote Dawson [1959, p.78], where the lack of in-
tuitive suitability of the deontic logic resulting from defining ‘O’ as ‘3�’ in S4.4 is at-
tributed to Geach.
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tempt is made to characterize the logic of the tense logical operator ‘FG’
– the future-directed tense logical version of 3�. Following up on a con-
jecture of Rescher & Urquhart [1971], Byrd tries to show that the logic
of ‘eventual permanence’ for linear time is the logic KD5. As mentioned
in Humberstone [2006] though, this conjecture is incorrect in view of the
KD4.3-provability of the formula ‘3�p→3�3�p’. In French [2008] the
present author has been able to show that the logic of ‘eventual perma-
nence’ for linear time is KD45.

4.2.1 Preliminaries

Before we begin, we will find the following results and model construc-
tions useful in what is to follow.

Given a transitive frame 〈W,R〉 say that x ∼ y for points x,y ∈W when-
ever Rxy ∨Ryx∨ x = y. Then a cluster is an equivalence class under ∼. We
will say that a cluster is degenerate if it consists of an irreflexive singleton,
simple if it contains only a reflexive singleton, and non-degenerate other-
wise. Letting C ≥R D whenever D ⊆

⋃
x∈CR(x), we will say that C immedi-

ately succeeds a cluster D whenever there is no C′ such that C ≥R C′ ≥R D.
Finally a cluster is first if it is ≥R-maximal, and last if it is ≥R-minimal.

Proposition 4.2.1 (Segerberg [1971a, p.78]). KD45 is sound and complete
with respect to the class of point generated frames F = 〈W,R〉 such that R
is transitive, and F contains either a single non-degenerate cluster, or a non-
degenerate cluster which immediately succeeds a degenerate one.

Proposition 4.2.2. (Segerberg [1971a, p.156]) S4.4 is determined by the class
of generated transitive frames with at most two clusters in which no cluster is
degenerate and with at most the first cluster being simple.

Proposition 4.2.3. (Segerberg [1971a, p.77]) S4.2 is determined by the class
of generated, transitive frames in which no cluster is degenerate and there is a
last cluster.
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Definition 4.2.4. Given a set of points Cn = {x1, . . . ,xn} define the frame
Fn = 〈W,R〉 as follows.

• W := Cn ∪ {w}.

• R := Cn ×Cn ∪ {〈w,x〉|x ∈ Cn}.

It is easy to see that the class of frames C = {Fn|n ∈Nat} ∪ {〈Cn,SCn〉|n ∈
Nat} are all of the finite point generated frames for KD45, and that C◦ –
the reflexive closure of this class of frames – is the class of all finite point
generated frames for S4.4.

Proposition 4.2.5. For all formulas A, `KD45 A↔ τ3�(A).

Proof. By induction upon the complexity of A, the only case of interest
being in the induction step when A = �B for some formula B. What we
want to show then is that �A↔ 3�A. The right-to-left direction of this
equivalence is just 5. The left-to-right direction is derivable from 4 and D
as follows: �A→ ��A→ 3�A. By the inductive hypothesis this give us
�A↔3�τ3�(A) as desired.

4.2.2 The Minimum Logic

We will begin our investigation of the structure of the range of τ3� for
KD45 by first determining the minimal normal modal logic into which it
can be embedded. It is easy to see that if a normal modal logic can be
faithfully be embedded into a logic S by a translation τ∇ then ∇ must be
normal in S. Thus, we will begin our search for the minimal normal modal
logic into which KD45 can be faithfully embedded by τ3� by looking at
extensions of the smallest logic in which 3� is normal. In Humberstone
[2006] it is shown that the smallest logic in which the modality 3� is
normal is the logic KDH.

H : (3�p∧3�q)→3�(p∧ q).
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Thus, it is easy to see that any logic into which KD45 can be faithfully em-
bedded must be an extension of KDH. This is a very soft lower bound, and
as it happens we can strengthen this result somewhat further. What we
will now show is that the minimum normal modal logic into which KD45
can be faithfully embedded by τ3� is the logic we will call KDH4ml5ml,
where 4ml and 5ml are the τ3�-translations of 4 and 5 given below.

4ml : 3�p→3�3�p

5ml : �3p→3��3p

Theorem 4.2.6. `KD45 A if and only if `KD4.2 τ3�(A).

Proof. The ‘only if’ direction follows from Proposition 4.2.5 and the fact
that KD4.2 ⊆KD45, and the ‘if’ direction follows from the fact that KD4.2 ⊆
KD45.

Lemma 4.2.7. `KD4.2 (3�p∧3�q)→3�(p∧ q).

Proof. We begin at line 4 of Dawson [1959, p.75], the first four lines being
K-provable.

(1) 3�p→ (3¬�q∨3�(p∧ q)) Dawson

(2) ��q→ (3�p→3�(p∧ q)) (1),T F

(3) �q→ (3�p→3�(p∧ q)) (2),4

(4) 3�q→3(3�p→3�(p∧ q)) (3),RM3

(5) 3�q→ (�3�p→33�(p∧ q)) (4),K

(6) �3�p→ (3�q→33�(p∧ q)) (5),T F

(7) 3��p→�3�p G

(8) 3�p→3��p 4,3−EM

(9) 3�p→�3�p (7), (8),T F

(10) 3�p→ (3�q→33�(p∧ q)) (6), (10),T F

(11) (3�p∧3�q)→33�(p∧ q)) (10),T F

(12) (3�p∧3�q)→3�(p∧ q) (11),4.
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Proposition 4.2.8. KDH4ml5ml ⊆KD4.2

Proof. It is easy to see that 4ml and 5ml are both provable in KD4.2, as
these are just τ3�(4) and τ3�(5). The only case left then is that of the H
axiom which is covered by Lemma 4.2.7

Theorem 4.2.9. For all formulas A:

`KD45 A if and only if `KDH4ml5ml τ3�(A) (4.1)

Proof. The ‘only if’ direction proceeds by induction upon the length of
derivations of A. For the base case suppose that A is an axiom. The case
where A is 4 or 5 is handled by 4ml and 5ml respectively. The case where
A is K or D follow from the fact that 3� is normal in KDH (and hence in
KDH4ml5ml) and that KDH proves G (which is the translation of D). The
inductive step is trivial.

The ‘if’ direction, considered contrapositively, invites us to consider
the case when 0KD45 A. By Theorem 4.2.6 this means that 0KD4.2 τ3�(A).
Thus, by Proposition 4.2.8 it follows that 0KDH4ml5ml τ3�(A).

Theorem 4.2.10. KDH4ml5ml is the minimum logic into which KD45 can be
faithfully embedded by τ3�.

Proof. It is clear that every logic into which KD45 can be faithfully embed-
ded by τ3� is an extension of KDH – as this is the smallest logic in which
3� is normal. Further, every such logic must prove τ3�(4) and τ3�(5) –
which are axioms of KDH4ml5ml. Hence, for all S, if S(3�) = KD45 then
S ⊇KDH4ml5ml.

4.2.3 Maximal Logics

In this section we will investigate what the maximal logics into which
KD45 can be faithfully embedded by τ3� are. In particular we will show
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that KD45 and S4.4 are amongst these logics. Before showing this though,
we will first need to recall some results on the extensions of KD45. In
particular, recall that the formula Altn for n ∈ Nat is as follows, and is
canonical for the condition on frames 〈W,R〉 that each point in W have no
more than n R-successors (i.e. that ∀x ∈W : |R(x)| ≤ n).

Altn : �p0 ∨�(p0→ p1)∨ . . .∨�(p0 ∧ . . .∧ pn−1→ pn).

Lemma 4.2.11. Every modal logic S ⊇ KD45 is either one of KD45, S5, Triv
or one of KD45Altn, S5Altn for some n ∈ N.

Proof. From Segerberg [1971a], p.127 we know that the above logics are
all of the normal extensions of KD45. By the result listed on page 190
of Segerberg [1971a] we also know that every (quasi-normal) extension of
KD45 is normal, and hence will be equivalent to one of the logics listed
above.

Theorem 4.2.12 (KD45 is maximal in NRan(τ3�,KD45)). KD45 is faith-
fully embedded into a logic S ⊇KD45 by τ3�, then S = KD45.

Proof. Suppose that a logic S is faithfully embedded into KD45 by τ3�,
and assume for a reductio that S) KD45. By Lemma 4.2.11 we know that
S is either an extension of S5, or KD45Altn for some n ∈ Nat. If S ⊇ S5
then we know that 3�p → p ∈ S, and that as this is just τ3�(�p → p)
that the faithfulness of the translation would require that KD45 prove T.
If, on the other hand S = KD45Altn for some n ∈ Nat then as τ3�(A) ↔
A ∈ KD45 for all A (and hence in S) we would have τ3�(Altn) provable in
S, which by the faithfulness of the translation would require that KD45
prove Altn. As neither of these formulas are provable in KD45 we are left
with a contradiction, and the result follows.

As one can see from examining the literature, most of the interest in
the translation τ3� has been in the interpretation of KD45 as a doxastic
logic, with the various target logics being envisaged as candidate epistemic
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logics in which we can define belief as possible knowledge.3 To this end,
we will turn now to looking for a maximal logic among the extensions of
KT. A good place to start then is the logic S4.4, which is mentioned in
Lenzen [1978] as being the strongest plausible epistemic logic. S4.4 is the
smallest normal extension of S4 by the following formula.

.4 : p→ (3�p→�p).

What we will now show is that this logic is maximal amongst the nor-
mal logics into which KD45 is faithfully embedded by τ3�. Thus, if we are
thinking of a plausible epistemic logic as being one in which we can define
belief as possible knowledge, lending support to Lenzen’s claim that S4.4
is the strongest plausible epistemic logic. Before doing this we will first
show that τ3� faithfully embeds KD45 into S4.4.

Proposition 4.2.13. Let M = 〈W,R,V 〉 be a model on a serial, transitive
frame, and let M◦ = 〈W,R◦,V 〉 be the model resulting from extending R so
that it is reflexive – i.e. R◦ = R∪{〈x,x〉|x ∈W }. Then, for all points x ∈W and
all formulas A:

M |=x τ3�(A) ⇐⇒ M◦ |=x τ3�(A).

Proof. By induction upon the complexity of A, the only case of interest
being that where A = �B for some formula B.

For the ‘⇒’ direction suppose thatM |=x 3�τ3�(B). Then, there exists
a point y ∈ R(x) such that M |=y �τ3�(B). By the seriality of R we know
that y has at least one R-successor, and that for all such R-successors z,
M |=z τ3�(B). Thus, by the induction hypothesis we can reason that, for
all such z ∈ W , M◦ |=z τ3�(B). Additionally, we know that for all points
u ∈ R(y) \ {y} M◦ |=u τ3�(B). Moreover, by the transitivity of R (and hence
R◦) we know that every R-successor of a point u ∈ R(y) such that u , y

3The notion of possibility involved here is epistemic possibility – i.e. the notion cor-
responding to 3 for an epistemic reading of �. In particular we are thinking of ‘possible
knowledge’ as the reading of the operator ¬K¬K , where K is our epistemic �.
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verifies τ3�(B). Hence we can reason that, for all such z ∈ R(y), M◦ |=z
�τ3�(B). By transitivity we know that Rxz for all such z, and hence that
M◦ |=x 3�τ3�(B) as desired.

For the ‘⇐’ direction suppose that M◦ |=x 3�τ3�(B). Then there is a
y ∈ R◦(x) such that M◦ |=y �τ3�(B), and that for all z ∈ R◦(y) we know
thatM◦ |=z τ3�(B). By the inductive hypothesis we know that for all such
z, M |=z τ3�(B). As R◦(y) = R(y) ∪ {y} we also know that all of the R-
successors of y verify τ3�(B), and thus thatM |=y �τ3�(B). Again, by the
fact that R◦(x) = R(x) ∪ {x} we can see that Rxy, and consequently that
M |=x 3�τ3�(B).

It is worth noting that Proposition 4.2.13 allows us to show that KD4
and S4 are τ3�-equivalent. This result is not of present interest though in
light of the fact S4(3�) is not KD45, as S4 fails to prove G (i.e. τ3�(D)).

Corollary 4.2.14. KD45 ≡τ3�
S4.4.

Proof. The left-to-right direction follows from the fact that τ3�(A)↔ A ∈
KD45, and the fact that τ3� faithfully embeds KD45 into S4.4.

For the right-to-left direction suppose that τ3�(A) <KD45. Then there
is a modelM = 〈W,R,V 〉 on a frame generated by a point w which either
contains a single cluster, or a single irreflexive point which is R-related to
a single cluster, and a point x ∈W such thatM 6|=x τ3�(A). By Proposition
4.2.13 this means that there is a model M◦ 6|=x τ3�(A). The only differ-
ence betweenM andM◦ is that inM the generating point w is possibly
irreflexive, while inM◦ all points are reflexive. It is thus easy to see that
M◦ is a model for S4.4 and thus that τ3�(A) < S4.4.

Proposition 4.2.15 (Lenzen [1979]). For all formulas A:

A ∈KD45 if and only if τ3�(A) ∈ S4.4.

Proof. Follows from Corollary 4.2.14 and the fact that τ3�(A)↔ A ∈KD45.
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Lemma 4.2.16. Every proper extension of S4.4 proves one of (i) B, (ii) Altn,
or (iii) Altn ∨3�pn+1→ pn+1 for some n ∈Nat.

Proof. This result follows from the inspection of the result in Segerberg
[1971b] concerning the extensions of S4.4 – (i) is provable in all extensions
of S5, (ii) is provable in all the logics between S4.4 and S4Alt2 (which is
there called V1), (iii) is provable in all logics intermediate between S4.4
and S4.7.

Lemma 4.2.17. `KT Altn→ τ3�(Altn) for all n ∈Nat.

Proof. (Altn) → 3(Altn) by T, which distributing 3 over the disjunction
gives us (Altn)→ τ3�(Altn).

Theorem 4.2.18 (S4.4 is maximal). If τ3� faithfully embeds KD45 into a
logic S ⊇ S4.4, then S = S4.4.

Proof. We proceed by showing that the translation τ3� does not faithfully
embed KD45 into any proper extension of S4.4, the result then following
from Proposition 4.2.15.

Suppose that some proper extension of S4.4, S, is such that τ3� faith-
fully embeds KD45 into S. By Lemma 4.2.16 we know that every proper
extension of S4.4 proves one of the following: (i) B , (ii) Altn for some
n ∈ Nat, or (iii) Altn ∨ (3�pn+1 → pn+1). We proceed now by cases. For
case (i) we are told that `S 3�p→ p. As this is the formula τ3�(�p→ p),
by the faithfulness of the translation we would have that `KD45 �p → p.
For case (ii) we are told that `S Altn for some n ∈ Nat. By Lemma 4.2.17,
and the fact that S ⊇ KT we know that this means that `S τ3�(Altn),
which by the faithfulness of the translation would require that `KD45 Altn,
which is not the case. For the case of (iii) we note that this means that
`S Altn ∨ (3�pn+1→ pn+1). By Lemma 4.2.17 and classical reasoning this
means that `S τ3�(Altn)∨ (3�pn+1→ pn+1), and that as this is τ3�(Altn ∨
(�pn+1 → pn+1)), the faithfulness of the translation would require that
`KD45 Altn ∨ (�pn+1 → pn+1). As KD45 proves none of these formulae,
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we can thus reason that KD45 cannot be faithfully embedded into any
proper extension of S4.4, and the result follows.

4.2.4 The Bigger Picture.

So far we have been probing the limits of the range of τ3� for KD45, show-
ing what its minimum is, and what its maximal logics are. What we will
do now is to fill in the gaps in the structure of the range of τ3� for KD45.

Definition 4.2.19. Given a model 〈W,R,V 〉 generated by a point w with a
last clusterC ⊆W , construct the new modelM(C,w) = 〈W(C,w),R(C,w),V(C,w)〉
as follows:

• W(C,w) := C ∪ {w}.

• RC := (R∩C ×C)∪ {〈w,x〉|x ∈W(C,w)}.

• V(C,w)(pi) := V (pi)∩W(C,w).

Definition 4.2.20. M,C |= A ⇐⇒ ∀x ∈ C,M |=x A.

Lemma 4.2.21. Let M = 〈W,R,V 〉 be a model on a transitive frame with a
last cluster C ⊆W . Then for all formulas A, and all x ∈W :

M |=x 3�A ⇐⇒ M,C |= A. (4.2)

Proof. (⇒) SupposeM |=x 3�A. Then there is a point y ∈W such that Rxy
andM |=y �A. This means that for all points z ∈ R(y),M |=z A. Thus, by
the definition of a last cluster we know that C ⊆ R(y), and henceM,C |= A
as desired.

(⇐) Suppose that M,C |= A. As C is last in M we know that for all
y ∈ C, R(y) = C. Hence M,C |= �A, and thus by the definition of a last
cluster we know thatM |=x 3�A.

Theorem 4.2.22. Suppose thatM = 〈W,R,V 〉 is a model generated by a point
w on a reflexive, transitive frame with a last cluster C, and that M(C,w) =
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〈W(C,w),R(C,w),V(C,w)〉 is a model obtained via Definition 4.2.19. Then for all
formulas A:

M |=w τ3�(A) ⇐⇒ M(C,w) |=w τ3�(A). (4.3)

Proof. By induction upon the complexity of A, the only case of interest
being that where A = �B for some formula B.

For the ‘only if’ direction suppose that thatM |=w 3�τ3�(B). By Lemma
4.2.21 it follows that M,C |= τ3�(B). By the induction hypothesis this
means that, for all such points y ∈ C,M(C,w) |=y τ3�(B). As for all of these
points R(C,w)(y) = C we can see that M(C,w) |=y �τ3�(B), and that by the
definition of R(C,w) that R(C,w)wy, and thusM(C,w) |=w 3�τ3�(B).

For the ‘if’ direction suppose that M(C,w) |=w 3�τ3�(B). This means
that M(C,w),C |= τ3�(B). By the induction hypothesis this means that for
all points y ∈ C,M |=y τ3�(B), which by Lemma 4.2.21 means thatM |=w
3�τ3�(B) as desired.

Theorem 4.2.23. S4.2 ≡τ3�
S4.4.

Proof. The right-to-left direction follows from the fact that S4.2 ⊆ S4.4. To
show that the reverse direction holds, suppose that τ3�(A) < S4.2 for some
formula A. Then by Proposition 4.2.3 there is a modelM on a transitive
frame generated by a point w with a last cluster, andM 6|=w τ3�(A). Then
by Theorem 4.2.22 there is a modelM(C,w) such thatM(C,w) 6|=w τ3�(A). It
is easy to see thatM(C,w) has only two clusters, with the first being simple,
and that thus by Proposition 4.2.2 that τ3�(A) < S4.4 as desired.

Theorem 4.2.24. For all logics S, such that S4.2 ⊆ S ⊆ S4.4:

S4.2 ≡τ3�
S ≡τ3�

S4.4. (4.4)

Corollary 4.2.25. KD4.2 ≡τ3�
S4.2.

Proof. The left-to-right direction follows from the fact that KD4.2 ⊆ S4.2.
For the right-to-left direction, suppose that τ3�(A) <KD4.2. Then there is
a modelM = 〈W,R,V 〉 on a serial, transitive and convergent frame, and a
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point x ∈ W such thatM 6|=x τ3�(A). By Proposition 4.2.13 we know that
M◦ 6|=x τ3�(A). As this model is just the reflexive version ofM this model
is one on a reflexive, transitive and convergent frame, and thus as S4.2 is
complete w.r.t this class of frames we can conclude that τ3�(A) < S4.2.

Theorem 4.2.26. For all logics S, such that KD4.2 ⊆ S ⊆KD45:

KD4.2 ≡τ3�
S ≡τ3�

KD45. (4.5)

4.2.5 Maximal Logics in NRan(τ3�,KD45) – a partial solu-

tion

What we will do here is give a partial solution to the problem of deter-
mining what the logics inmax(NRan(τ3�,KD45)) are. Our solution is par-
tial in two different respects. Firstly we are only considering those logics
which are Kripke complete – that is to say, determined by some class of
frames. Secondly we are only considering those logics which are exten-
sions of the modal logic KD4.2.

Recall the frames Fn from Definition 4.2.4.

Proposition 4.2.27. Suppose that Fn and Fm are such that m > n. Then there
is a p-morphism f from Fm onto Fn.

Proof. Let f be any onto function which maps w onto w, and points in Cm
onto points in Cn such that f −1(Cn) = Cm.

Proposition 4.2.28. Suppose that F◦n and F◦m are such that m > n. Then there
is a p-morphism f from F◦m onto F◦n.

Proof. As for Proposition 4.2.27.

We will also require the following formula Xn, which is valid at a point
x in a frame 〈W,R〉 iff |R(x)| ≥ n.

Xn :
∧

0≤i<n
3(p0 ∧ . . .∧¬pi ∧ . . .∧ pn−1).
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Theorem 4.2.29. Suppose that S is a Kripke complete normal modal logic ex-
tending KD4.2 such that S* KD45 and S* S4.4. Then, for some n ∈Nat we
have the following.

3�Xn→ (3�pn+1→ pn+1) ∈ S.

Proof. As S* KD45 we know that there if a frame Fn such that Fn < Fr(S),
and likewise as S* S4.4 we know that there is a frame F◦m < Fr(S). Letting
k = max(m,n) + 1, suppose for a contradiction that 3�Xk → (3�pk+1 →
pk+1) < S. As S is Kripke complete this would mean that there is a frame
G = 〈U,S〉 in Fr(S) and a valuation V such that, for some point x ∈ U we
have 〈U,S,V 〉 |=x 3�Xk and 〈U,S,V 〉 6|=x 3�pk+1 → pk+1. As 〈U,S,V 〉 |=x
3�Xk it follows by Lemma 4.2.21 that 〈U,S,V 〉,C |= Xk. So the final clus-
ter, C, of G contains at least n+m+ 1 points. Suppose that there is a point
x ∈U \C such that R(x) = C. Then as Fr(S) is closed under point generated
subframes this would mean that Fn+m+1 ∈ Fr(S). As n+m+ 1 > n it follows
by Proposition 4.2.27 that Fn ∈ Fr(S) – contrary to our hypothesis. So there
is no point x ∈ U \C such that R(x) = C. Consider now the p-morphism
f : U → W from 〈U,S〉 onto F◦k. which maps each point in C to a point
in Ck, and all other points onto w. It is clear that this is a p-morphism
from G onto F◦k. As n+m+ 1 > m it the follows by Proposition 4.2.28 that
F◦m ∈ Fr(S) – contrary to our hypothesis. Consequently there can be no
such frame G and the result follows.

Theorem 4.2.30. The set of all Kripke complete maximal logics extending
KD4.2 in NRan(τ3�,KD45) consists of exactly the logics KD45 and S4.4

Proof. Follows from Theorem 4.2.29 and the fact that 3��Xn↔ τ3�(�Xn)
is provable in K and that 3�A↔3��A is provable in KD4.2.

What this means then is that if there are any maximal normal modal
logics in NRan(τ3�,KD45) other than KD45 and S4.4 then either they are
not extensions of KD4.2, or they are not Kripke complete.
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4.3 The KT-embedding Problem

The most common translation occurring in the literature is the transla-
tion τ�, which replaces all occurrences of �A in a formula with �A (alias.
�A∧A). There are obvious philosophical reasons for being interested in
this translation – arising, for example, from considerations of doxastic and
provability logics – the second of which we will mention here. In provabil-
ity logic we are interested in modal logics in which we can interpret �A
as meaning that, for every function ∗ which maps the propositional vari-
ables of A to formulas of Peano Arithmetic (PA for short), the sentence A∗

is provable in PA. As it turns out this logic – the logic of provability in
PA – is the normal modal logic GL. One fact which we know about prov-
ability in PA is that there are some sentences which are true, but which
are not provable – this following from Gödel’s first incompleteness theo-
rem. The question then arises of finding the modal logic S for which �A

can be interpreted as meaning that A∗ is both true and provable in PA –
i.e. of finding the logic which is embedded into GL by the translation τ�.
As it turns out this logic, the logic of strong provability as this modal op-
erator is often referred to in provability logic, is the normal modal logic
Grz. Equally though, we might want to know what the logic of strong
provability is when we interpret �A as being provability in some weaker
(or even perhaps stronger) arithmetic theory than PA – and so it is worth-
while investigating the inferential behaviour of �, and by extension the
behaviour and properties of the τ�-translation in a general setting, as this
will by extension allow us to discover some things about strong provabil-
ity in arithmetic theories other than PA.

This translation also connects up with the Kripke semantics in a very
intuitive way – a formula of the form τ�(A) being true at a point x in a
model M = 〈W,R,V 〉 iff the formula A is true at x in the model M◦ =
〈W,R◦,V 〉 – where R◦ is the reflexive closure of the relation R. Similarly,
a formula τ�(A) is valid on a frame 〈W,R〉 just in case A is valid on the
frame 〈W,R◦〉.
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One of the interesting features of this translation stems from the fol-
lowing result.

Theorem 4.3.1. For all formulas A we have the following.

A ∈KT if and only if τ�(A) ∈K.

Now there is a sense in which the τ�-translation is an obvious one,
having been ‘read off’ the T axiom. One might reason that what the T
axiom tells us is that when a formula �A is true at a point in a model,
then A is also true at that point in the model. So we reason that we can
mimic the behaviour of the KT-box operator in K using �. One might then
wonder whether we can extend this reasoning to any normal extension of
K by an axiom of the following form, for some formula in a single variable
X(p).

�p→ X(p).

The idea here would be to use a modal translation τ such that τ(�A) =
�τ(A)∧X(τ(A)). If this approach worked then we would have a recipe for
translating many common modal logics into K – for example 4 is an axiom
of the above form where X(p) = ��p, and D is one where X(p) = 3p. Un-
fortunately, this approach (to translating normal modal logics faithfully
into K) does not work in general –one of the main purposes of the trans-
lation τ�D in section 3.3 being to show this. What the τ�D translation tells
us is that, not only does τ�D not faithfully embed KD into K, but it doesn’t
embed KD into any logic distinct from KD itself! Similarly, we can show
that this procedure does not work where X(p) = ��p – the translation of
the 4-axiom failing to be K-provable. This idea is recaptured somewhat in
the non-compositional translation of K4 into K given in Fitting [1988].

One obvious thing to wonder then is what the range of τ� is for KT.
This is an obvious thing to wonder mostly due to the prevalence and sim-
plicity of the translation involved, its obvious connection to the Kripke
semantics, and the simplicity of the source logic involved. As it turns out
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this is no simple task, and in this section we will outline some known re-
sults as to the structure of NRan(τ�,KT) as well as providing some weak
evidence as to what its structure might be.

We will begin by restating some well known results.

Theorem 4.3.2. KT is maximal in NRan(τ�,KT).

Proof. Follows by theorem 3.2.1 and the fact that τ�(A)↔ A ∈KT.

Theorem 4.3.3. K is minimal in NRan(τ�,KT).

Proof. Follows from the fact that K is the smallest normal modal logic, and
thus – as it is in NRan(τ�,KT) – it must be the smallest such logic.

So it follows by our convexity principle (Theorem 3.3.6) that all the
normal modal logics between K and KT are in NRan(τ�,KT). What we
will do in the rest of this section is provide some evidence for the following
conjecture.

Conjecture 4.3.4 (KT Embedding Problem). NRan(τ�,KT) consists of all
and only the modal logics in the interval (K,KT).

As K is the minimal logic into which KT can be faithfully embedded by
τ�, we are able to clarify what is needed in order to prove the correctness
of the above Conjecture. What we need to show is that for every formula
A such that A < KT that there is a formula B such that τ�(B) ∈ K ⊕ A.
For some logics it is very easy to find the desired formula B – τ�(A) being
provable in K⊕A. Good examples of such formula A for which we have
this behaviour are 4 and B. Moreover, for these logics the following result
allows us to determine what the logic S(�) is.

Theorem 4.3.5 (Zolin [2000, p.881]). If S is a normal modal logic such that
S(�) ⊇ S then S(�) = S⊕ {�p→ p}.

For the majority of formulas A, though, we are going to have to find a
formula B which is distinct from A whose �-translation is provable in K⊕
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A. One place which provides some suggestive information regarding such
formulas B is the Kripke semantics. One thing we will often find when
a formula A is not KT-provable then the reflexive closure of the frames
on which A is valid prove some formula B which is not KT-provable. For
example consider the case where A is the formula Dc. Dc is valid on the
class of all frames which are partially functional in the sense that each point
x has at most one R-successor. The reflexive closure of the class of all such
frames satisfies the property that each point has at most two R-successors
– making the formula Alt2 valid. Consequently we know that the formula
τ�(Alt2) ∈ KDc and thus that this logic is not in NRan(τ�,KT). Using this
method (of inspection of Kripke frames) we can show that all the common
normal modal logics are not in NRan(τ�,KT) – as shown in Table 4.3.

S′ KT-unprovable formula A s.t. τ�(A) ∈ S′.
K5 (p∧¬q)→ (¬3�(p∧¬q)∨¬3�(¬p∧¬q)).
K4 �p→��p.
KB p→�3p.
KTc p→�p.
K⊕{3�p→�3p} 3�p→�3p.
K⊕{�⊥∨3�⊥} �3p→3�p.
KAltn Altn+1.

Table 4.1: A list of common modal logics, and a formula A which is not a
theorem of KT for which they prove τ�(A).

4.3.1 Formulas of modal degree one

What we will do here is present a partial confirmation of the conjecture
given above, given in French & Humberstone [2009]. That is, we will show
that when A is a formula of modal degree 1 which is not KT-provable, that
the logic K⊕A proves a formula τ�(B) such that B <KT. Recall that every
modal formula A is equivalent to a conjunction of formulas A1 ∧ . . .∧Ak
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where each of the Ai is of the following form.

(B∧�C)→ (�D1 ∨ . . .∨Dn).

In the case where A is of modal degree one we know that each of the
formulas B,C,D1, . . . ,Dn will all be of modal degree zero – containing no
�-operators, and as such are all equivalent to their τ�-translations. Let us
define a function f such that is A is a set of ‘basic disjunctions’ A1∧ . . .∧Ak
as above, then f (A) = f (A1)∧ . . .∧ f (Ak) where f (Ai) is the formula:

(s∧B∧�C)→ (�(D1 ∨ s)∨ . . .∨�(Dn ∨ s)).

Here we are taking s as the first propositional variable not occurring in
A – although all the matters here is that s be a new propositional variable.

Lemma 4.3.6. For all formulas A we have that A→ f (A) ∈K.

Proof. Follows from that fact that, where
∧k
i=1Ai is a normal form for A,

Ai → f (Ai) ∈K.

Lemma 4.3.7. For all formulas A of modal degree 1 we have that if f (A) ∈ K
then A ∈KT.

Theorem 4.3.8. If S = K ⊕ Γ for Γ a set of formulas of modal degree 1 and
S* KT then τ� does not faithfully embed KT into S.

This allows us to settle the KT-embedding Conjecture as it bears upon
normal extensions of K by formulas of modal degree at most 1 in the af-
firmative. All such logics which are not sublogics of KT proving some
KT-unprovable �-formula. This of course does not settle the conjecture
one way or the other, and what we will close this chapter with is a brief
suggestion of one way in which this might be done.

Let us briefly consider the 5 axiom (=3p→�3p). Put into conjunctive
normal form this is equivalent to the following formula A5.

A5 : �¬p∨�(�¬p→⊥).
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This is just a basic disjunction where there are no formulas B or C and
n = 2 – the formula under the scope of � in the second disjunct being of the
form �C→⊥. As this is a formula of modal degree 2 we cannot apply the
function f above to our normal form and a get a desirable result. Instead
consider the following class of functions fk, where fk(Ai) is as follows.

(pk ∧ fk+1(B)∧�fk+1(C))→ (�(fk+1(D1)∨ pk)∨ . . .∨�(fk+1(Dn)∨ pk)).

If we assume that our basic disjunctions Ai are all constructed out of
some set of propositional variables {p0, . . . ,pm}, then the suggestion being
made here is that we apply the above function fk where k =m+1. Whether
this suggestion could be shown to work in the general case is not clear, but
what we will offer here is some (merely) suggestive evidence.Consider the
formula f1(A5).

f1(A5) : p1→ (�(¬p0 ∨ p1)∨�((�¬p0 ∧ p2→⊥)∨ p1).

Now it can easily be shown that f1(A5) ∈K5 and that f1(A5) = τ�(B) for
a formula B < KT. So one way we might consider proceeding is along the
above lines – the present author has been unable to get any general results
along these lines, though.
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V

Intertranslatability and Translational
Equivalence

In this chapter we will look at a cluster of relations between logics S and
S′ which are stronger than that of S being able to be faithfully embedded
into S′. Predominantly we will be concerned with arbitrary modal logics
and the modal-to-modal translations between them, although it should be
clear to the reader how to transfer many of the results here to the case
where arbitrary logics (considered as sets of formulas) are at issue. The
obvious place for us to start our investigation is to consider the relation of
intertranslatability. Let us say that two logics S and S′ are intertranslatable
via τ and τ ′ whenever τ faithfully embeds S into S′ and τ ′ faithfully em-
beds S′ into S. We will say that S and S′ are intertranslatable simpliciter
whenever there exist translations τ and τ ′ such that S and S′ are inter-
translatable via τ and τ ′ respectively. Throughout this chapter we will
adopt the convention of associating translations with source logics – hence
τ is a translation which faithfully embeds S into S′ and likewise for τ ′ and

91
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S′. The notion of two logics being intertranslatable is rarely considered
in isolation – usually being mentioned only as an afterthought to discus-
sions of translational equivalence (which we will get to shortly) – but it
is instructive to consider how far we can get by just assuming intertrans-
latability and not translational equivalence (see footnote 4 for example).
Firstly, it is quite easy to show that intertranslatable logics constitute the
equivalence classes of the relation ‘is faithfully embeddable into’. That
is to say, suppose that we define the following relation between logics S

and S′: S is faithfully embeddable into S′, or equally that S can be faithfully
embedded into S′, whenever there exist a translation τ which faithfully
embeds S into S′. Then the sets of logics which are equivalent under this
relation are the intertranslatable ones. That is to say, logics which are
intertranslatable agree upon where they stand in the ‘is faithfully embed-
dable into’ relation, a fact which we will now prove.

Theorem 5.0.9. Suppose that S and S′ are intertranslatable via τ and τ ′. Then
for all logics S′′, S′′ can be faithfully embedded into S if and only if it can be
faithfully embedded into S′.

Proof. For the ‘only if’ direction suppose that t faithfully embeds S′′ into
S, and that A ∈ S′′. Then we know that t(A) ∈ S, and thus by the fact that
τ faithfully embeds S into S′ we have that τ(t(A)) ∈ S′. Consequently we
can see that S′′ can be faithfully embedded into S′ by the translation τ ◦ t.

For the ‘if’ direction suppose that t′ faithfully embeds S′′ into S′, and
that A ∈ S′′. Then by supposition we know that t′(A) ∈ S′, and thus by the
fact that τ ′ faithfully embeds S into S′ we have that τ ′(t′(A)) ∈ S′. Con-
sequently we can see that S′′ can be faithfully embedded into S′ by the
translations τ ′ ◦ t′.

Theorem 5.0.10. Suppose that S and S′ are intertranslatable via τ and τ ′.
Then S can be faithfully embedded into a logic S′′ if and only if S′ can be
faithfully embedded into S′′.
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Proof. For the ‘only if’ direction suppose that t faithfully embeds S into
S′′ and that A ∈ S′. Then we know that τ ′(A) ∈ S, and thus that t(τ ′(A)) ∈
S′′. Thus we can see that S′ can be faithfully embedded into S′′ by the
translation t ◦ τ ′.

For the ‘if’ direction suppose that t′ faithfully embeds S′ into S′′, and
that A ∈ S. Then we know that τ(A) ∈ S′, and thus that t′(τ(A)) ∈ S′′. Thus
we can see that S can be faithfully embedded into S′′ by the translation
t′ ◦ τ .

What this tells us so far is that logics which are intertranslatable are
equivalent with respect to translations, and that the relation of ‘is inter-
translatable with’ is an equivalence relation on the set of all logics. As
mentioned above though, this relation has not historically been the one
with which people have been primarily interested. Let us consider now
a particular strengthening of the notion of intertranslatability. Let us say
that S and S′ are translationally equivalent via τ and τ ′ whenever S and
S′ are intertranslatable via τ and τ ′ and additionally fulfil the following
condition for all formulas A.

τ ′(τ (A))↔ A ∈ S (5.1)

τ (τ ′(A))↔ A ∈ S′ (5.2)

Here we are taking ‘↔’ to be a connective common to the languages of
both S and S′ which acts as an equivalence connective in a way which we
will now specify. Say that two formulas A and B are synonymous accord-
ing to a logic S whenever, for all contexts C(·), if C(A) ∈ S then C(B) ∈ S
where C(B) results from C(A) by replacement of one or more occurrences
of A with B.1 Following the usage given in Humberstone [2005b] let us

1This is synonymy in the sense of Smiley [1962], and is one of many reasons why
the present author thinks that it is ill-advised to call what we are calling translational
equivalence ‘synonymy’, as is done in Pelletier & Urquhart [2003] and de Bouvère [1965].
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say that a logic S is equivalential if there is a set of formulas (called equiva-
lence formulas) ∆(p,q) constructed solely out of the propositional variables
p and q such that A and B are synonymous whenever ∆(A,B) ⊆ S.2 Two
logics S and S′ are similarly equivalential if there is a set of formulas ∆(p,q)
such that A and B are synonymous according to S (resp. S′) iff ∆(A,B) ⊆ S

(resp. ∆(A,B) ⊆ S′). In saying that the connective ‘↔’ used in the defini-
tion of conditions (5.1), (5.2), acted like an ‘equivalence connective’ what
we meant was that it was a connective such that S and S′ were similarly
equivalential in virtue of {p↔ q} as a set of equivalence formulas.3 If we
are concerned with congruential monomodal logics, we can take ‘↔’ to be
the material biconditional – the material biconditional being equivalen-
tial in all congruential monomodal logics (and hence in all normal modal
logics). As before we will say that S and S′ are translationally equivalent
simpliciter whenever there exist appropriate translation functions τ and
τ ′ such that S and S′ are translationally equivalent via τ and τ ′. One thing
which is noted in Pelletier & Urquhart [2003], and which we will return
to later, is that we have defined translational equivalence relative to some
equivalence connective which is part of the primitive vocabulary of the
logics involved. In later sections we will look at some shortcomings of this
way of considering translational equivalence, and show that nonetheless
it is the right sort of notion to be thinking about for considering transla-

Note that, as pointed out in fn. 1 of Smiley [1962], this use of C(·) is not a departure from
our standard usage.

2As explained in Humberstone [2005b], this notion of equivalential is an adaptation of
the notion explained in Czelakowski [1980], where the equivalential/non-equivalential
distinction is applied instead to logics in the SET-FMLA framework (i.e. consequence
relations).

3Caleiro & Gonçalves [2007] presents us with a relation between logics they call
equipollence, formulated in terms of consequence relations, which they claim is much
stronger than translational equivalence because it will apply to logics in which we can-
not even define a reasonable biconditional connective. It is interesting to note that the
example they give involves consequence relations according to which whenever two for-
mulas are provably equivalent, they are also synonymous in Smiley’s sense.
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tional equivalence in modal logic.
We have explicitly defined translational equivalence in terms of inter-

translatability in order to make it clear that all of the results which we
have shown above also hold for logics which are translationally equiva-
lent.4 By contrast Pelletier [1984] and Pelletier & Urquhart [2003] define
the notion of translational equivalence in terms of translations τ and τ ′

which embed S into S′ and S′ into S in the sense not requiring faithful-
ness. One fact that deserves to be pointed out at this stage is that, in this
particular case, it does not matter whether we require the translations τ
(and τ ′) to embed S into S′ (or S′ into S) faithfully or merely in the sense
requiring them to map theorems of the source logic to theorems of the
target logic – as shown in the following Theorem.

Theorem 5.0.11 (Pelletier & Urquhart [2003, p.286]). Suppose that we have
two logics S and S′ and translations τ and τ ′ which for all formulas A fulfil
conditions (5.1) and (5.2) in addition to the following.

A ∈ S only if τ (A) ∈ S′.
A ∈ S′ only if τ ′(A) ∈ S .

Then S and S′ are translationally equivalent via τ and τ ′.

Proof. We show only the case of S and τ . Suppose that τ(A) ∈ S′. Then
by the above condition we know that τ ′(τ(A) ∈ S, which by condition (5.1)
means that A ∈ S, and hence that τ faithfully embeds S into S′. By the
same reasoning we can also show that τ ′ faithfully embeds S′ into S and

4There are a number of places in the literature when it is stated that logics which
are translationally equivalent have a particular property, where the relevant proof makes
no use of conditions (5.1) and (5.2). Unless close attention is paid, one might be led to
think that such properties do not hold for intertranslatable logics – the example which
impacted on the author is that given in Segerberg [1982] as Theorem 2.4.1 – which as
we have shown above holds for merely intertranslatable logics (logics which satisfy only
conditions (iii) and (iv) given in Segerberg [1982]). We will have some further comments
to make on Segerberg’s syntactic equivalence at the end of this chapter.
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hence that S and S′ are intertranslatable and also fulfil conditions (5.1)
and (5.2) – and hence are translationally equivalent via τ and τ ′.

The above theorem allows for some simplification when trying to show
that two logics are translationally equivalent – all we need to do is show
that certain formulas are provable within our candidate logics, rather than
having to go through with the more complex arguments to do with show-
ing that the two logics involved can be faithfully embedded into one an-
other.

An alternative formulation of translational equivalence can be extracted
from Blok & Pigozzi [1989], wherein they use a similar notion to demon-
strate a particularly strong relationship between a logic (considered as a
consequence relation) and a class of algebras. Let `S be a consequence re-
lation and K a class of algebras. Then K is an algebraic semantics for S if
there exist terms δ(p) and ε(p) such that for all B1, . . . ,Bn,A we have the
following.5

B1, . . . ,Bn `S A ⇐⇒ δ(B1) ≈ ε(B1), . . . ,δ(Bn) ≈ ε(Bn) |=K δ(A) ≈ ε(A). (5.3)

That is to say, a consequence relation has an algebraic semantics if it can be
faithfully embedded into the algebraic consequence relation |=K for some
class of algebras K using a translation of the kind above.6 K is an equivalent

5Technically this is a simplified version of what is for a logic to have an algebraic
semantics. According to the official definition what is required is that there be a set of
pairs of formulas in a single variable {〈δi(p), εi(p)〉|1 ≤ i ≤ n} for some n ∈Nat, the RHS of
the inset equation then being that for all k,1 ≤ k ≤m we have that

{δi(Bj ) ≈ εi(Bj )|1 ≤ i ≤m, 1 ≤ j ≤ n} |=K δk(A) ≈ εk(A).

This simplification does not influence any of the results mentioned, other than to make
much clearer the relationship between abstract algebraic logic as described in Blok &
Pigozzi [1989] and translational equivalence.

6One of the consequences of the above condition pointed out in Blok & Pigozzi [1989]
is that if a consequence relation ` has an algebraic semantics K, then the smallest quasi-
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algebraic semantics for `S if K is an algebraic semantics for S and there is a
set of equivalence formulas ∆(p,q) such that we have the following for all
formulas A.

A a`S ∆(ε(A),δ(A)). (5.4)

What we will show in the following theorem is that the appropriate ana-
logues of these two conditions are sufficient for translational equivalence.

Theorem 5.0.12. Suppose that S and S′ are modal logics, and that τ and τ ′

are functions from formulas to formulas which are homonymous on ↔ and
additionally fulfil the following two conditions.

(i) A ∈ S if and only if τ(A) ∈ S′

(ii) A↔ τ(τ ′(A)) ∈ S′

Then S and S′ are translationally equivalent via τ and τ ′.

Proof. What we need to establish is that it follows from (i) and (ii) that τ ′

faithfully embeds S′ into S and that A↔ τ ′(τ(A)) ∈ S.
To see that τ ′ faithfully embeds S′ into S suppose that τ ′(A) ∈ S. By (i)

we know this is the case if and only if τ(τ ′(A)) ∈ S′, and by (ii) that this is
equivalent to A ∈ S′.

To see that A ↔ τ ′(τ(A)) ∈ S we note that τ(A) ↔ τ(A) ∈ S′ and by
(ii) that this means that τ(A)↔ τ(τ ′(τ(A))) ∈ S′ and lastly by (i) that this
means that A↔ τ ′(τ(A)) ∈ S.

This result allows us to determine the relationship between a logic and
its contingency fragment. Given a normal modal logic S let us call the
logic S(∇) = {A|τ∇(A) ∈ S} the contingency fragment of S (denoting this
logic as S∇). Here we are taking ∇ to defined by ∇p =def 3p ∧3¬p, and

variety containing K (often notated as Q(K)) is also an algebraic semantics for ` – where a
quasi-variety is the class of exactly those algebras satisfying some set of quasi-identities
(universal formulas of the form (t1 ≈ u1 ∧ · · · ∧ tn ≈ un)→ tn+1 ≈ un+1. More interestingly,
this also means that every consequence relation with an equivalent algebraic semantics
has an equivalent algebraic semantics in terms of some quasi-variety.
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with τ∇ being the translation which replaces �A with ∇(A).7 Following
Cresswell [1988] let us say that � is definable (in terms of contingency) in S

iff there is a formula C(p) constructed only out of the propositional vari-
able p such that �p ↔ τ∇(C(p)) ∈ S. Then we are able to produce the
following result.

Theorem 5.0.13. Suppose that � is definable in terms of contingency in a
normal modal logic S. Then S and S∇ are translationally equivalent.

Proof. It is clear from the definition of S∇ that the translation τ∇ faithfully
embeds S∇ into S. As � is definable in S in terms of contingency we know
that there is a formula C(p) such that �p↔ τ∇(C(p)) ∈ S. Letting τ be the
translation which replaces all occurrence of ∇(A) with C(A) we are able
to show, by induction upon the complexity of A – using the above result
for the case where A = �B, that A ↔ τ∇(τ(A)) ∈ S, which by Theorem
5.0.12 allows us to conclude that S and S∇ are translationally equivalent
as desired.

One of the examples of translational equivalence between monomodal
logics mentioned in Pelletier & Urquhart [2003] is the following.

Theorem 5.0.14 (Lenzen [1979]). S4.4 and KD45 are translationally equiv-
alent via the translations τ� and τ3�.

What is particularly striking about the above result is that these two
logics – KD45 and S4.4 – are both maximal logics within the range of
τ3� for KD45. In fact, as the following theorem shows, the relationship
between translational equivalence and maximality within the range of a
translation is quite strong.

Theorem 5.0.15. Suppose that S and S′ are translationally equivalent via τ
and τ ′. Then S′ s maximal in the range of τ for S.

7This deviates from the convention used elsewhere of having ∇ represent an arbitrary
modality (as in Zolin [2000]). Whenever we are using ∇ to represent contingency rather
than an arbitrary modality we will explicitly note this.
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Proof. Suppose for a contradiction that there is a logic S′′ ) S′ into which
S can be faithfully embedded by τ . As S′′ ) S′ we know there is some
formula B such that B ∈ S′′ and B < S′. Consequently by the translational
equivalence of S and S′ we know that τ ′(B) < S. By our hypothesis this
means that τ(τ ′(B)) < S′′, which as S′′ ) S′ means that B < S′′ by (5.1)
giving us a contradiction. Hence S′ is maximal in the range of τ for S.

One might wonder whether we could weaken the hypothesis in the
above theorem from the translational equivalence of S and S′ to the mere
intertranslatability of S and S′. I suspect not, but have no definitive proof
of the fact – no counterexample, that is.

Translational equivalence also extends to the extensions of normal modal
logics, in a particularly uniform way.

Proposition 5.0.16. Suppose that S and S′ are congruential modal logics ren-
dered translationally equivalent by the modal-to-modal translations τ and τ ′.
Then for all formulas A and sets of formulas Γ we have that:

(i)A ∈ S+ Γ if and only if τ(A) ∈ S′ + τ(Γ )

(ii)A ∈ S′ + τ(Γ ) if and only if τ ′(A) ∈ S+ Γ

We treat only case (i), case (ii) following similarly.

Proof. For the ‘only if’ direction suppose that A ∈ S + Γ . Then it follows
that, for substitutions σ1, . . . ,σn, and formulas B1, . . . ,Bn in Γ that:

(σ1(B1)∧ . . .∧ σn(Bn))→ A ∈ S.

As τ is a modal-to-modal translation which faithfully embeds S into S’ it
follows then that (τσ1(B1)∧ . . .∧τσn(Bn))→ τ(A) ∈ S′. So letting σ ′ = τ ◦σ ,
and noting that, by Theorem 2.0.20, τ ◦ σ = σ ′ ◦ τ it follows that:

(σ ′1(τ(B1))∧ . . .∧ σ ′n(τ(Bn)))→ τ(A) ∈ S′.

From which it follows that τ(A) ∈ S′ + τ(Γ ).
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For the ‘if’ direction suppose that τ(A) ∈ S′ + τ(Γ ), Then it follows that,
for substitutions σ1, . . . ,σn, and for formulas B1, ..,Bn in Γ that:

(σ1(τ(B1))∧ . . .∧ σn(τ(Bn)))→ τ(A) ∈ S′.

As τ ′ is a modal-to-modal translation which faithfully embeds S’ into S it
follows that (τ ′(σ1(τ(B1))) ∧ . . . ∧ τ ′(σn(τ(Bn)))) → τ ′(τ(A)) ∈ S. So letting
σ ′ = τ ′ ◦ σ , and noting that, by Theorem Theorem 2.0.20, τ ′ ◦ σ = σ ′ ◦ τ ′ it
follows that:

(σ ′1(τ ′(τ(B1)))∧ . . .∧ σ ′n(τ ′(τ(Bn))))→ τ ′(τ(A)) ∈ S.

Which, by the fact that τ ′(τ(A))↔ A ∈ S implies that (σ ′1(B1)∧. . .∧σ ′n(Bn))→
A ∈ S, from which it follows that A ∈ S+ Γ and the result follows.

What the above theorem tells us is that when two normal modal logics
are translationally equivalent then each of their quasi-normal extensions
can be faithfully embedded into a quasi-normal extension of the other.
Note, though, that this does not mean that each of their quasi-normal ex-
tensions is translationally equivalent to a quasi-normal extension of the
other, despite the fact that τ ′(τ(A))↔ A will be provable in all extensions
(and hence quasi-normal extensions) of S. The reason for this is that we
have no guarantee, in general, that the equivalence formulas in S will also
be equivalence formulas in its extensions.

One case where we do have all the quasi-normal extensions of transla-
tionally equivalent logics being also translationally equivalent is the case
of S4.4 and KD45 mentioned above. Recall that S4.4 and KD45 are ren-
dered translationally equivalent by the translations τ� and τ3�, as stated
in Theorem 5.0.14. So as a direct result of the above theorem we have the
following.

Corollary 5.0.17. For all formulas A, and sets of formulas Γ we have the fol-
lowing.

A ∈KD45 + Γ if and only if τ3�(A) ∈ S4.4 + τ3�(Γ ).

A ∈ S4.4 + Γ if and only if τ�(A) ∈KD45 + τ�(Γ ).
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Moreover we know that all extensions of KD45 and S4.4 are normal
(Lemma 4.2.11 and Lemma 4.2.16), and thus that {p↔ q} is a set of equiv-
alence formulas in all of their extensions, allowing us to conclude the fol-
lowing.

Theorem 5.0.18. For all sets of formulas Γ we have the following.
(i) KD45⊕ Γ and S4.4⊕ τ3�(Γ ) are rendered translationally equivalent by the
translations τ3� and τ�.
(ii) S4.4⊕ Γ and KD45⊕ τ�(Γ ) are rendered translationally equivalent by the
translations τ� and τ3�.

We treat only case (i), case (ii) following similarly.

Proof. We begin by showing that KD45 ⊕ Γ and S4.4 ⊕ τ3�(Γ ) are inter-
translatable. By Corollary 5.0.17 and the fact that all extensions of KD45
are normal we know that τ3� faithfully embeds KD45 ⊕ Γ into S4.4 ⊕
τ3�(Γ ), which is faithfully embedded into KD45 ⊕ τ�(τ3�(Γ )) by τ�. As
τ�(τ3�(A))↔ A ∈ KD45 it follows that KD45⊕ τ�(τ3�(Γ )) = KD45⊕ Γ . So
it follows that KD45⊕ Γ and S4.4⊕ τ3�(Γ ) are intertranslatable.

That they are translationally equivalent follows from Theorem 5.0.12
as τ�(τ3�(A))↔ A ∈ KD45 and {p↔ q} is a set of equivalence formulas in
all extensions of KD45 and S4.4.

5.1 Examples of Translational Equivalence in

Modal Logic

We will now go through some examples of translational equivalence in
modal logic in detail. We will begin by considering the two post-complete
normal modal logics KT! and KVer. As is well known, these two modal
logics are determined by the singleton reflexive, and the singleton irreflex-
ive frame respectively. Consider now the following two modal-to-modal
translations.
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τKT!(�A) = τKT!(A). τKVer(�A) = τKVer(A)→ τKVer(A).

Proposition 5.1.1. For all formulas A we have the following:

(i) A ∈KT! only if τKT!(A) ∈KVer

(ii) A ∈KVer only if τKVer(A) ∈KT!

Proof. By induction upon the length of derivations of A.

Proposition 5.1.2. For all formulas A we have the following:

(i) A↔ τKVer(τKT!(A)) ∈KT!

(ii) A↔ τKT!(τKVer(A)) ∈KVer.

Proof. From the fact that τKVer(τKT!(A)) = τKT!(A) and τKT!(τKVer(A)) = τKVer(A).

Theorem 5.1.3. KT! and KVer are translationally equivalent via the transla-
tions τKT! and τKVer.

It shouldn’t be entirely surprising that KT! and KVer are translation-
ally equivalent, as both of them can just be seen as just ‘classical logic in
disguise’ – the � in KT! just being an identity operator, and the � in KVer
just being a one-place version of a truth constant (hence the name KVer for
Verum). What we will do now, though, is give an example of a somewhat
more interesting case of translational equivalence.

5.1.1 Example: KD! and KTAlt2 are Translationally Equiv-

alent

Here we will show that the normal monomodal logics KD! and KTAlt2 are
translationally equivalent. Recall that Alt2 is the following formula.

Alt2 : �p∨�(p→ q)∨�(p∧ q→ r).
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It is easy to see that KTAlt2 is determined by the class of reflexive, 2-
alternative frames, where a frame 〈W,R〉 is 2-alternative whenever |R(x)| ≤
2 for all x ∈ W . This logic may at first glance appear to be a somewhat
arbitrary one, with no natural interpretation. As it turns out though, this
is none other than the logic of ‘today and tomorrow’ discussed by A.N.
Prior and K. Segerberg (Byrd [1980]). If we consider the points in W as
days, then we can interpret the truth of �A at x as meaning that A is true
at day x and the day after day x – hence the title of Segerberg [1967].

Let us say that a class of frames 〈W,R〉 is functional if ∀x∀y∀z((Rxy ∧
Rxz) → y = z), and totally functional if it is both functional and serial.
Then KD! is determined by the class of totally functional frames (Segerberg
[1986]). Thus for a totally functional frame 〈W,R〉 and an element x ∈W ,
we can see that R(x) = {y} for some element y ∈W . Consequently we may
occasionally call this point y the ‘successor’ of x. KD! also receives a nat-
ural tense logical interpretation when we think of the elements of W as
days. In this case, we can think of the truth of �A at a point x as meaning
that A is true on the day after x.

Here we will be using the translations τ� and τ�? , where τ� is a famil-
iar translation in the provability logic literature (Shavrukov [1991], Boo-
los [1993], Litak [2007]) where the modal function �p∧ p is occasionally
written as �p. The translation τ�? is the modal-to-modal translation which
replaces all occurrences of �B in a formula with �? τ�?(B), where �? is the
following modal function.8

�?A =Def �A∨ (3A∧¬A).

To see that this modal function is normal in KTAlt2 consider the fol-
lowing Lemma, which shows that a formula of the form �? A is true at a
point in a reflexive, 2-alternative model exactly when A is true through-
out a certain set of points.

8These two translations are mentioned in Segerberg [1986, p.49], where the inter-
translatability of KD! and KTAlt2 is mentioned without proof.
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Lemma 5.1.4. Let M = 〈W,R,V 〉 be a model on a reflexive, 2-alternative
frame, and define the function f :W →W as follows.

f (x) =

y if Rxy and y , x

x otherwise .

Then for all formulas A, and all points x ∈W :

M |=x�?A if and only ifM |=f (x) A.

Proof. For the ‘only if’ direction suppose for a reductio thatM |=x�?A and
M 6|=f (x) A. By the definition of f we know that either (i) f (x) = y for some
point y ∈W or (ii) that f (x) = x and that ∀y(Rxy→ x = y. For (i) as Rxy and
M 6|=y A we know thatM 6|=x �A and also thatM 6|=x 3A∧¬A, and hence
that M 6|=x�? A. For (ii) we know that M 6|=x A and hence that M 6|=x �A,
and that whileM |=x ¬A we also know thatM 6|=x 3A as the only point in
R(x) is x itself – a point at which A is false. Hence we can see again that
M 6|=x�?A.

For the ‘if’ direction suppose that M |=f (x) A. By the definition of f
we know that either (i) f (x) = y for some point y ∈ W such that Rxy or
(ii) that f (x) = x and that ∀y(Rxy → x = y). For (i) this would mean that
M |=y A. EitherM |=x A orM 6|=x A – the first making �A true at x, and the
second making 3A∧¬A true at x. Consequently we can see thatM |=x�?A.
For (ii) this means thatM |=x A and that as this is the only point which is
R-accessible to x thatM |=x �A and hence thatM |=x�?A.

It bears mentioning that the function f mentioned above is indeed well
defined, as on a reflexive, 2-alternative frame for a given x ∈W there can
be at most one point y ∈ W such that f (x) = y. To show that KD! and
KTAlt2 are intertranslatable (with an aim to then showing that they are
translationally equivalent), we will also need the following model con-
struction which takes a model and converts its accessibility relation to its
reflexive closure – making all points reflexive.
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Definition 5.1.5. Given a model M = 〈W,R,V 〉 construct a new model
M◦ = 〈W,R◦,V 〉 where R◦xy ⇐⇒ Rxy ∨ x = y.

Theorem 5.1.6. Suppose thatM = 〈W,R,V 〉 is a model on a totally functional
frame. Then for all formulas A and all points x ∈W we have that:

M |=x τ�(A) if and only ifM◦ |=x A.

Proof. By induction upon the complexity of A, the only case of interest
being that where A = �B for some formula B.

For the ‘only if’ direction suppose that M |=x �τ�(B) ∧ τ�(B). Then
the point y accessible from x is such that M |=y τ�(B). By the inductive
hypothesis then we know thatM◦ |=x B and also thatM◦ |=y B. As R◦(x) =
{x,y} we can conclude thatM◦ |=x �B as desired.

For the ‘if’ direction suppose that M◦ |=x �B. Then for all points y
such that R◦xy we know that M◦ |=y B. By the inductive hypothesis this
means thatM |=y τ�(B) for all such points y. As R(x) ⊆ R◦(x) we know that
M |=x �τ�(B) and as x ∈ R◦(x) we can conclude thatM |=x �τ�(B)∧ τ�(B)
as desired.

Theorem 5.1.7. Suppose that M = 〈W,R,V 〉 is a model on a reflexive, 2-
alternative frame, and that Mf = 〈W,f ,V 〉 where f is as defined in Lemma
5.1.4. Then for all formulas A and all points x ∈W we have that:

M |=x A if and only ifMf |=x τ�(A).

Proof. By induction upon the complexity of A, the only case of interest
being that where A = �B for some formula B.

For the ‘only if’ direction suppose thatM |=x �B. This means that for
all points y ∈ R(x) that M |=y B. By the inductive hypothesis this means
that for all such points y ∈ W that Mf |=y τ�(B). As f (x)∪ {x} = R(x) we
know then thatMf |=x τ�(B) and also thatMf |=f (x) τ�(B). Consequently
we can see thatMf |=x �τ�(B)∧ τ�(B).

For the ‘if’ direction suppose that Mf |=x �τ�(B) ∧ τ�(B). Then we
know that Mf |=f (x) τ�(B), and by the inductive hypothesis that M |=x B
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andM |=f (x) B. As f (x)∪ {x} = R(x) we can see that this means that for all
y ∈ R(x) we have thatM |=y B and thus thatM |=x �B as desired.

Theorem 5.1.8. τ� faithfully embeds KTAlt2 into KD!.

Proof. What we want to show is that, for all formulas A we have:

A ∈KTAlt2 if and only if τ�(A) ∈KD!.

For the ‘only if’ direction suppose that τ�(A) <KD!. Then there is a totally
functional modelM = 〈W,R,V 〉 and a point x ∈W such thatM |=x τ�(B).
By Theorem 5.1.7 we thus know thatM◦ 6|=x A and asM◦ is reflexive and
2-Alternative we thus know that A <KTAlt2.

For the ‘if’ direction suppose that A <KTAlt2. Then there is a reflexive,
2-Alternative modelM = 〈W,R,V 〉 and a point x ∈ W such thatM 6|=x A.
By Theorem 5.1.6 we know thatMf 6|=x τ�(A) and hence – as this model is
clearly a totally functional one – that τ�(A) <KD!.

Theorem 5.1.9. Suppose that M = 〈W,R,V 〉 is a model on a reflexive, 2-
alternative frame, and that Mf = 〈W,f ,V 〉 where f is as in Lemma 5.1.4.
Then for all formulas A and all x ∈W we have that:

M |=x τ�?(A) if and only ifMf |=x A.

Proof. By induction upon the complexity of A, the only case of interest
being that where A = �B for some formula B – which follows by Lemma
5.1.4.

Theorem 5.1.10. Suppose that M = 〈W,R,V 〉 is a model on a totally func-
tional frame. Then for all formulas A and all points x ∈W we have that:

M |=x A if and only ifM◦ |=x τ�?(A).

Proof. By induction upon the complexity of A, the only case of interest
being that where A = �B for some formula B.
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For the ‘only if’ direction suppose thatM |=x �B. Then for the unique
successor of x – the point y – we know that M |=x B. By the inductive
hypothesis this means thatM◦ |=y τ�?(B). We also know that f (x) = y and
hence by Lemma 5.1.4 thatM◦ |=x�?τ�?(B).

For the ‘if’ direction suppose that M 6|=x �B. Then there is a point
y ∈ R(x) such that M 6|=y B. By the inductive hypothesis this means that
M◦ 6|=y τ�?(B). As Rxy we know that R◦xy and thus thatM◦ 6|=x �τ�?(B). As
R◦(x) = {x,y} we can also see thatM◦ 6|=x 3τ�?(B)∧¬τ�?(B). Consequently,
M◦ 6|=x �τ�?(B)∨ (3τ�?(B)∧¬τ�?(B)).

Theorem 5.1.11. τ�? faithfully embeds KD! into KTAlt2.

Proof. What we want to show is that, for all formulas A we have that:

A ∈KD! if and only if τ�?(A) ∈KTAlt2.

For the ‘only if’ direction suppose that τ�?(A) <KTAlt2. Then there is a
reflexive, 2-alternative modelM = 〈W,R,V 〉 and a point x ∈W such that
M 6|=x τ�?(A). By Theorem 5.1.9 we thus know thatMf 6|=x A. AsMf is a
totally functional model we thus know that A <KD!.

For the ‘if’ direction suppose that A < KD!. Then there is a functional
modelM = 〈W,R,V 〉 and a point x ∈ W such thatM 6|=x A. By Theorem
5.1.10 we know thatM◦ 6|=x τ�?(A), and hence – as this model is clearly on
a reflexive, 2-alternative frame – that τ�?(A) <KTAlt2.

So far we have managed to show that KTAlt2 and KD! are intertrans-
latable, all that remains to be shown then is that the translations τ� and τ�?
are inverses in the sense that if we take a formula in either logic, and trans-
late it into the other using the appropriate translation, and then translate
it back into the starting logic, we then end up with a formula equivalent
to what we started out with. That is to say, we now need to show that
conditions (5.1) and (5.2) on page 93 are fulfilled.
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Firstly we will begin by showing that �A↔ τ�?(τ�(�A)) ∈KTAlt2.

(1) �p↔ (�p∧ p) T

(2) �p↔ (�p∧ p)∨ (3p∧¬p) (1),Alt2

(3) �p↔ (�p∨ (3p∧¬p))∧ p (2),T F

Next, we show �A↔ τ�(τ�?(�A)) ∈KD!.

(1) �p↔ (�p∧ p)∨ (�p∧¬p) T F

(2) �p↔ (�p∧ p)∨ (3p∧¬p) (1),D!

(3) �p↔ (�p∧ p)∨ ((3p∧¬p)∨ (p∧¬p) (2),T F

(4) �p↔ (�p∧ p)∨ ((3p∨ p)∧¬p) (3),T F

Given the above two results it is easy to prove by induction upon the
complexity of formulas that A ↔ τ�?(τ�(A)) ∈ KTAlt2 (or equally A ↔
τ�(τ�?(A)) ∈KD!), allowing us to conclude the following via Theorem 5.0.12.

Theorem 5.1.12. KTAlt2 and KD! are translationally equivalent via the trans-
lations τ� and τ�? .

An alternative axiomatization of KD! to the one given above (where we
take the normal extension of K by the axiom �p↔ 3p) is to take KD! to
be KDAlt1. The above theorem can thus be seen as showing that the logics
KTAlt2 and KDAlt1 are translationally equivalent. One might wonder we
can generalize this result to showing that, for all n ∈ Nat, KDAltn and
KTAltn+1 are translationally equivalent via τ� and τ�? .

Firstly we will consider whether, for n ≥ 2, τ�? faithfully embeds KDAltn
into KTAltn+1 – the n = 1 case having been covered above. As it happens
τ�? does not even embed KDAltn into KTAltn+1 in the sense requiring that
the translations of theorems of KDAltn be theorems of KTAltn+1. To see
this consider the τ�? translation of K.

τ�?(K) : (�(p→ q)∨ (3(p→ q)∧¬(p→ q)))→
((�p∨ (3p∧¬p))→ (�q∨ (3q∧¬q)))
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It is easy to show that τ�?(K) isn’t a theorem of KTAltn+1 for n > 1, for
consider the following model.

• W = {w,x1,x2, . . . ,xn}.

• R = {〈w,xi〉|1 ≤ i ≤ n} ∪ {〈x,x〉|x ∈W }

• V (p) = {x1}, V (q) = {w,x1}.

w

x1 xn

Figure 5.1: A countermodel to the provability of τ�?(K) in KTAltn+1, the
open circles representing reflexive points.

It is easy to see that ‘�(p→ q)’ is true at w in the above model, and that
‘3p∧¬p’ is also true at w, but that ‘�q∨ (3q∧¬q)’ is false at w – q being
false at x2 (thus making �q false at w) and also that q is true at w (thus
making 3q ∧ ¬q false at w). Thus we can see that the modal function �?

isn’t even normal in the modal logics KTAltn+1 for n ≥ 2. This raises the
following obvious open question.

Open Problem 5.1.13. Is there a translation τ which faithfully embeds
KDAltn into KTAltn+1 for n > 1?

By contrast, we are able to show that, for all n ∈ Nat, A ∈ KTAltn+1 if
and only if τ�(A) ∈ KDAltn. To show this we will require the following
model construction – which takes a model on a reflexive frame and con-
verts it to one where a point x ∈W is reflexive in the new frame iff its only
alternative is itself in the original frame.
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Definition 5.1.14. Given a modelM = 〈W,R,V 〉 define a new modelM− =
〈W,R−,V 〉 where R−xy ⇐⇒ (Rxy ∧ x , y)∨ (x = y ∧∀z(Rxz→ y = z)).

Theorem 5.1.15. Suppose thatM = 〈W,R,V 〉 is a model on a serial n-Alternative
frame. Then for all formulas A and all points x ∈W we have that:

M |=x τ�(A) if and only ifM◦ |=x A.

Proof. By induction upon the complexity of A, the only case of interest
being that where A = �B for some formula B.

For the ‘only if’ direction suppose that M |=x �τ�(B) ∧ τ�(B). Then
all points y such that Rxy are such that M |=y τ�(B). By the inductive
hypothesis we know thatM◦ |=x B, and also thatM |=y B for all y such that
Rxy. As R◦(x) = R(x)∪ {x} it follows that B is true at all the points which
are R◦-accessible to x inM+ and thus thatM◦ |=x �B.

For the ‘if’ direction suppose that M◦ |=x �B. Then for all points y
such that R◦xy we know that M◦ |=y B. By the inductive hypothesis this
means thatM |=y τ�(B) for all such points y. As R(x) ⊆ R◦(x) we know that
M |=x �τ�(B) and as x ∈ R◦(x) we can conclude thatM |=x �τ�(B)∧ τ�(B)
as desired.

Theorem 5.1.16. Suppose that M = 〈W,R,V 〉 is a reflexive n-Alternative
frame. Then for all formulas A and all points x ∈W we have that:

M |=x A if and only ifM− |=x τ�(A). (5.5)

Proof. By induction upon the complexity of A, the only case of interest
being that where A = �B for some formula B.

For the ‘only if’ direction suppose thatM |=x �B. Then for all points
y such that Rxy we know that M |=y B. By the inductive hypothesis this
means that M− |=y τ�(B). As R−(x) ⊆ R(x) we know that this means that
M− |=x �τ�(B). By the reflexivity of R it follows thatM |=x B and thus by
the inductive hypothesis thatM− |=x τ�(B). ConsequentlyM− |=x �τ�(B)∧
τ�(B).
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For the ‘if’ direction suppose thatM− |=x �τ�(B)∧ τ�(B). Then for all
points y such that R−xy we haveM− |=y τ�(B). By the inductive hypothesis
it follows thatM |=x B and for all points y such that R−xy thatM |=y B. As
R(x) = R−(x)∪ {x} it follows thatM |=x �B as desired.

Theorem 5.1.17. For all n ∈Nat and all formulas A we have the following:

A ∈KTAltn+1 if and only if τ�(A) ∈KDAltn. (5.6)

Proof. For the ‘only if’ direction suppose that τ�(A) <KDAltn. Then there
is a model on a serial n-Alternative frameM = 〈W,R,V 〉 and a point x ∈W
such thatM 6|=x τ�(A). By Theorem 5.1.15 we have thatM+ 6|=x A. As this
is clearly a model on a reflexive n + 1-Alternative frame it follows that
A <KTAltn+1.

For the ‘if’ direction suppose that A <KTAltn+1. Then there is a model
on a reflexive n + 1-alternative frame M = 〈W,R,V 〉 and a point x ∈ W
such that M 6|=x A. By Theorem 5.1.16 we have that M− 6|=x τ�(A). As
〈W,R−〉 is clearly a serial, n-Alternative frame we can conclude that τ�?(A) <
KTAltn+1.

5.2 Is Intertranslatability Translational

Equivalence?

As we mentioned at the start of this chapter in fn. 4, there are instances
in the literature where people attribute properties to translational equiv-
alence which hold because the logics are intertranslatable – no special
appeals to translational equivalence being needed. One possible expla-
nation for this would be if there was no difference between translational
equivalence and intertranslatability. This would amount to showing that
whenever a pair of logics S and S′ are intertranslatable then they are trans-
lationally equivalent – the other direction following from Theorem 5.0.11.
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It is this question, of whether intertranslatability is translational equiv-
alence, which we will address in this section. Before doing so, though, we
will find it useful to briefly talk about invariant conditions for transla-
tional equivalence.

5.2.1 Invariant Conditions

A property P is an invariant for translational equivalence if whenever S and
S′ are translationally equivalent then either both have P or neither of them
does. Invariant conditions are very good for telling us when two logics
are not translationally equivalent, and it is to this work they are put in
Pelletier & Urquhart [2003]. The most useful invariant condition they
propose is the following.

Theorem 5.2.1 (Pelletier & Urquhart [2003, p.278]). If S and S′ are two
normal modal logics differing in the number of finite relational frames in a
given cardinality validating them, then they are not translationally equivalent.

This result allows us to show that the majority of the common nor-
mal modal logics are not translationally equivalent to each other. A very
useful necessary condition for a pair of modal logics to be translationally
equivalent follows from this result – the cardinality criterion. If S and S′

are translationally equivalent normal modal logics then they are both val-
idated by the same number of finite frames of size n, for all n ∈ Nat. This
leads us to the obvious question mentioned in Pelletier & Urquhart [2003]
of whether this condition is not only a necessary condition, but also a suf-
ficient one for translational equivalence. What we will show now is that
this is not the case.

Following Boolos [1993], let us say that a relation R is converse well-
founded if for every nonempty set X, there is an R-greatest element of X,
and element w of X such that Rwx for no x ∈W .

Theorem 5.2.2 (van Benthem [1983, p.47]). GL is valid on 〈W,R〉 iff R is
transitive and converse wellfounded.
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A relation R is converse weakly wellfounded if for every nonempty set X,
there is an R-greatest element of X, an element w of X such that Rwx for
no x ∈W other than w itself.

Theorem 5.2.3 (van Benthem [1983, p.48]). Grz is valid on 〈W,R〉 iff R is
transitive, reflexive and converse weakly wellfounded.

It is easy to see that the reflexive closure of a transitive and converse
wellfounded frame is a transitive, reflexive and converse weakly well-
founded frame. Likewise that the irreflexivization of a transitive, reflexive
and converse weakly wellfounded frame is a transitive and converse well-
founded one, giving us the following result. When 〈W,R〉 is a frame, let
〈W,R〉• be the frame 〈W,R•〉 where R• = R \ {〈x,x〉|〈x,x〉 ∈ R}, and recall
that 〈W,R〉◦ is the frame 〈W,R◦〉 where R◦ = R∪ {〈x,x〉|x ∈W }.

Theorem 5.2.4. Suppose that 〈W,R〉 is a finite frame. Then:
(i) 〈W,R〉• is a frame for GL iff 〈W,R〉◦ is a frame for Grz.
(ii) 〈W,R〉◦ is a frame for Grz iff 〈W,R〉• is a frame for GL.

Proof. Follows from the fact the the finite frames for GL and Grz are the
unions of finite irreflexive and transitive trees, a and finite reflexive and
transitive trees, and the fact that (·)• and (·)◦ are 1-1 on such frames.

Corollary 5.2.5. GL and Grz are valid on the same number of frames of size
n, for all n ∈Nat.

It is well known that Grz can be faithfully embedded into GL by the
translation τ� ([Boolos 1980, p.15]). What is perhaps less well known is
that, as shown in Boolos [1980], there can be no modal-to-modal trans-
lation which faithfully embeds GL into Grz – a proof of which we give
here.

Lemma 5.2.6. Let S be an extension of KD. Then for all unary contexts C(p)
we have that either C(⊥) ∈ S or ¬C(⊥) ∈ S.
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Theorem 5.2.7. Suppose that S is a modal logic such that �⊥ < S and ¬�⊥ <
S. Then S cannot be faithfully embedded by a modal-to-modal translation into
any S′ such that S′ ⊇KD.

Proof. Suppose that τ is a modal-to-modal translation such that τ(�A) =
C(τ(A)). Then, as S′ ⊇ KD by Lemma 5.2.6 we know that either C(⊥) ∈ S′

or ¬C(⊥) ∈ S′. But S proves neither �⊥ nor ¬�⊥, and thus the translation
fails in the ‘only if’ direction.

Corollary 5.2.8. GL cannot be faithfully embedded into Grz.

The above results now put us in a position to answer the question men-
tioned above, which happens to be the following open problem from Pel-
letier & Urquhart [2003].

PROBLEM 7. Are there pairs of normal modal logics S and S′ such

that S and S′ have the same number of frames of size n, for all n ∈
Nat, but S and S′ are not translationally equivalent?

The above results show that GL and Grz constitute such a pair of log-
ics, having the same number of frames of size n, for all n, but failing to
be intertranslatable (and hence also failing to be translationally equiva-
lent). Thus we can see that this condition is a necessary, but not sufficient
condition for a pair of logics to be translationally equivalent.

We return now to the question with which we started this section,
namely, whether translational equivalence is just intertranslatability. Coun-
terexamples like this have been present in the extant literature for quite
some time – the earliest being present in the thesis of R. Montague (re-
ported in de Bouvère [1965]) – all of them showing that this is not the case
for a variety of different logical frameworks. For example, in Wójcicki
[1984] it is shown that this is not the case for arbitrary consequence rela-
tions, his example involving consequence relations over the propositional
language consisting of a single unary operator.
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Considerations of the distinction between the analogues of intertrans-
latability and translational equivalence between first order theories have
been around for some time – Corcoran [1980] being a survey of such
considerations, which are also touched on in section 5 of Humberstone
[2005a]. In Corcoran [1983] we are given a general method for, given a
consistent first-order theory T , finding a theory ET (the ‘elongation’ of T )
such that T and ET are intertranslatable but not translationally equiva-
lent.9 Assume that T is the theory of a single binary relation R. Then ET
results from replacing every occurrence of a subformula of the form Rxy

in T with ERxyy. Corcoran then has a general theorem showing that ET
and T are not definitionally equivalent. In Andréka et al. [2005] we are
given an example of two first order theories which are intertranslatable
but not translationally equivalent.

Translational equivalence between first order theories is especially in-
teresting in light of its connection to modal logic, which allows us to make
a point which will be of some relevance in a moment. Let Ref and Irr be the
first order theories of a reflexive binary relation R, and irreflexive binary
relation R• respectively. Then it is easy to see that the following transla-
tions render Ref and Irr intertranslatable.10

Rxy =df R•xy ∨ x = y.

R•xy =df Rxy ∧ x , y.

It is likewise easy to see that Rxy ↔ (Rxy ∧ x , y)∨ x = y is a theorem of
Ref , and hence by the appropriate analogue of Theorem 5.0.12, that these
two theories are translationally equivalent. By contrast, if we consider
the restriction of the first order language (sometimes called the guarded
fragment) into which the modal language can be translated, then in this
context these two theories are not translationally equivalent (as it happens

9Specifically Corcoran shows that T and ET are not definitionally equivalent – i.e.
have no common definitional extension.

10The following example is mentioned in fn. 29 of Humberstone [2005a].
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these are even difficult to state in this context) – as if they were this would
mean that the normal modal logics KT and K were translationally equiva-
lent – and these logics are not even intertranslatable, as was shown at the
start of chapter 3. This is a good example of the degree to which transla-
tional equivalence, like most translation phenomena, is heavily dependent
on the expressive resources available to us in the object language.

We return now to the question of particular relevance to us, namely
whether in modal logic translational equivalence is just intertranslatabil-
ity. In Pelletier & Urquhart [2008], correcting a putative counterexample
in Pelletier & Urquhart [2003], a pair of logics are given which are shown
to be intertranslatable but not translationally equivalent – thus constitut-
ing a counterexample to this claim. The normal modal logics in question
have two propositional constants I and E (initial and end-point).

Given some set X ⊆ Nat, the logic LX is the smallest normal modal
logic containing the following axioms.

(1) 3A→�A

(2) ¬(I ∧E)

(3) ¬3I

(4) I →¬3kE, for k ∈ X.

Frames for this logic are of the form 〈W,R,I,E〉whereW is a nonempty
set, R a functional relation on W , and I and E are disjoint subsets of W .
We can think of the set I as being the set of initial points and E as the set of
end points of the frame. Generated frames for this logic can be thought of
as coming in two types. The first type of generated frame 〈W,R,I,E〉 are
the functional frames with I = ∅ and E ⊆ W – as the only conditions we
place upon the set E have to do with its interaction with I we are at liberty
to choose arbitrary subsets of W for the truth set of E in these frames.
The second type of frame are those generated frames 〈W,R,I,E〉which are
generated by a point x ∈ W such that x < R∗(x) (where R∗ is the ancestral
of R) for which I = {x} and E ⊆ {y|¬Rixy for i ∈ X}.
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What Pelletier and Urquhart show can be captured by the following
two theorems.

Theorem 5.2.9. Let X = {4k |k ∈Nat} and Y = {2 ·4k |k ∈Nat}. Then the logics
LX and LY are intertranslatable via τ�� and τ��.

Theorem 5.2.10. LX and LY differ in the number of 2-element frames validat-
ing them.

In particular, the frame 〈{x,y}, {〈x,y〉}, {x}, {y}〉 validates LY but not LX .
We will leave aside the details of the proof by cases here – turning instead
to a methodological point.

Technically what Pelletier and Urqhart have shown is that, in normal
modal logic over languages containing two or more propositional con-
stants, intertranslatability is not translational equivalence. It is, in a sense,
dishonest to think that this shows that intertranslatability is not transla-
tional equivalence in normal modal logic with no propositional constants,
as propositional constants bring with them a significant amount of extra
expressive power. Considering the degree to which the expressive power
of the object language can impact questions of intertranslatability and
translational equivalence, it is perhaps not correct to say that the above
example has shown that translational equivalence is not intertranslatabil-
ity in modal logic. For this to be the case, what we would like is an example
involving a pair of normal modal logics – without any propositional con-
stants – which are intertranslatable but not translationally equivalent. In
the next section we will give an example of a pair of quasi-normal modal
logics which are intertranslatable but not translationally equivalent, but
which draw out an interesting clarification which needs to be made re-
garding the notion of translational equivalence.



118 CHAPTER 5. TRANSLATIONAL EQUIVALENCE

5.2.2 The Hazen Example – Quasi-Normal Logics which

are Intertranslatable but not Translationally

Equivalent.

Recall that a modal logic S is quasi-normal whenever it is an extension
of the smallest normal modal logic K. In this section what we will do is
provide an example, similar to that given in Pelletier & Urquhart [2008],
of a pair of modal logics which are intertranslatable but not translation-
ally equivalent. In particular the pair of modal logics we will be inter-
ested in are two quasi-normal modal logics in the language of standard
monomodal logic.

That the two logics mentioned below are intertranslatable was sug-
gested by Allen Hazen in private correspondence. Throughout this sec-
tion we will let in be an abbreviation for 22n, and jn be an abbreviation for
2(2n)+1. The logics with which we will be concerned are the quasi-normal
modal logics Si and Sj described below.

Si : K + {3inp→�inp : n ∈Nat}.
Sj : K + {3jnp→�jnp : n ∈Nat}.

These two logics are characterized by (point generated) frames with distin-
guished elements which have ‘wasp-waists’ at a certain number of R-steps
away from the generating designated element – every in or jn R-steps re-
spectively. That is to say, the frames for these logics fulfil the following
‘wasp-waist’ condition for every n ∈ Nat. Let F = 〈W,R, {x}〉 be a frame
with distinguished element x (frame w.d.e. for short).11 Then wasp-waistm

is the following first order condition on frames w.d.e.

wasp-waistm : ∀y∀z(Rmxy⇒ (Rmxz⇒ z = y)). (5.7)

11A frame w.d.e. differs from a standard Kripke frame in that a formula is considered
to be valid on that frame whenever it is true at the distinguished element on all models
on that frame.
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Proposition 5.2.11. (i) Si is determined by the class of all frames w.d.e. which
satisfy wasp-waistin for all n ∈ Nat. (ii) Sj is determined by the class of all
frames w.d.e. which satisfy wasp-waistjn for all n ∈Nat.

Theorem 5.2.12. A ∈ Si if and only if τ��(A) ∈ Sj .

Proof. For the ‘if’ direction suppose that A < Si . Then there is a model
M = 〈W,R, {x},V 〉 such thatM 6|=x A. So by Theorem 2.1.5M+ 6|=x τ��(A).
All that remains to be shown then is that M+ is a model on a frame for
Sj . Suppose that, for some n ∈ Nat that 3jnp→ �jnp was not valid on the

frame for M+ at x. Then there is no y ∈ W + such that R+2(2n)+1
(x) , {y}.

As R+2 = R it follows that (R2(2n)+1
)

2
(x) , {y}. That is to say R2(2n)+2

(x) , {y},
which is just Rin+1(x) , {y}, for any y ∈ W +, and hence as W ⊆ W + for
any y ∈ W . But M is a model on a frame for Si , so this is impossible.
ConsequentlyM+ is a model on a frame for Sj , from which it follows that
τ��(A) < Sj .

For the ‘only if’ direction we proceed by induction upon the length
of derivations of A in Si – axiomatized as suggested by the introduction
above.12 For the basis case, where A is an instance of an axiom, the only
case of interest being that where A = 3inB→ �inB. In this case we know
that, as τ��(3inp→ �inp) = 3jnp→ �jnp and that Sj is closed under uni-
form substitution that τ��(3inB→ �inB) ∈ Sj . The inductive case is rou-
tine.

Theorem 5.2.13. A ∈ Sj if and only if τ��(A) ∈ Si .

5.2.2.1 Translational Equivalence and Non-Normal Modal Logics

Suppose that S is a logic on a propositional language LS, and C(p,q) is
an equivalence connective in S. Suppose also that O is a connective not

12That is to say, we are taking Si to be axiomatized by taking 3inp→�inp as an axiom
for each n ∈ Nat, in addition to axioms for K and the rules Modus Ponens and Uniform
Substitution.
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in LS. Then a logic S′ on the language LS′ which results from adding the
connectiveO to LS is a definitional extension of S if it is the result of adding
an axiom of the following form to S, where A(p1, . . . ,pn) is a formula form
LS containing only the propositional variables p1, . . . ,pn.

C(O(p1, . . . ,pn),A(p1, . . . ,pn)). (5.8)

Theorem 5.2.14 (Pelletier & Urquhart [2003]). Two logics S and S′ are trans-
lationally equivalent if and only if they have a common definitional extension.

Now there is nothing in the above definition which requires anything
other than the properties listed above regarding the behaviour of C – i.e.
that it is an equivalence connective, so this result holds even for non-
normal modal logics, as one would have expected. In order to show that
the logics Si and Sj defined above are not translationally equivalent we
will need to use a reformulation of a result given in Pelletier & Urquhart
[2003] concerning modal algebras. If A is a modal algebra, and D a filter
in A then we will call the pair 〈A,D〉 a modal matrix, and a matrix for S

whenever 〈A,D〉 |= S. Following Pelletier & Urquhart let us say that two
classes of matrices F and G are coalescent if there is a class H of matrices
which is a common definitional extension of both F and G.

Theorem 5.2.15. If S and S′ are translationally equivalent non-normal modal
logics, and M and M ′ are the classes of modal matrices validating them, then
M and M ′ are coalescent.

Proof. The argument proceeds as in Pelletier & Urquhart [2003, p.273].

Following Zakharyaschev & Chagrov [1997], given a frame 〈W,R〉, we
will let 〈W,R〉+ denote the algebra 〈2W ,∩,∪,⊃,∅,�〉, where ⊃ and � are
defined as follows, where X,Y ⊆W .

X ⊃ Y = (W \X)∪Y
�X = {x ∈W : ∀y(Rxy→ y ∈ X)}.
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Given a frame with distinguished elements 〈W,R,D〉 where D is the set of
distinguished elements in the frame, define the dual of 〈W,R,D〉 (〈W,R,D〉+)
to be the matrix 〈〈W,R〉+,D+〉 where:

D+ = {X ⊆W |D ⊆ X}. (5.9)

Theorem 5.2.16 (Zakharyaschev & Chagrov [1997, p.216]). Every finite
modal matrix is isomorphic to the dual of some finite frame with distinguished
elements.

Theorem 5.2.17. Two non-normal modal logics are not translationally equiv-
alent if they differ in the number of non-isomorphic frames w.d.e. of a given
cardinality that validate them.

Proof. If S and S′ differ in the number of non-isomorphic frames with dis-
tinguished elements which validate them, then by Theorem 5.2.16 they
will differ in the number of non-isomorphic modal matrices which vali-
date them. But coalescent classes of matrices have the same number of
matrices of a given cardinality, the function mapping matrices with a com-
mon definitional expansion being a bijection between the two classes pre-
serving the cardinality of the underlying algebras. So the matrices for S

and S′ cannot be coalescent – and thus by Theorem 5.2.15 (contraposed)
it follows that S and S′ are not translationally equivalent.

This result, coupled with the consideration of the three element frames
with distinguished elements for Si and Sj allow us to conclude the follow-
ing.

Corollary 5.2.18. The non-normal modal logics Si and Sj are intertranslat-
able but not translationally equivalent.

This example is not completely satisfying for a number of reasons.
Firstly, it is dealing with non-normal modal logics and not normal modal
logics – but this is a minor concern. Of more importance is that fact that it
is not clear that there is a set of equivalence formula in both of the logics
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above of the form {C1(p,q),C2(p,q), . . . ,Cn(p,q)} where each of the formu-
las Ci involve only some primitive binary connective of the two logics –
no matter which set of boolean primitives we take – this being what Pel-
letier and Urquhart’s requirement that logics share a common equivalence
connective amounts to. While logics failing to be translationally equiva-
lent due to not having an equivalence connective in their language isn’t
ruled out by our definitions, we could just as easily have stated our condi-
tions so that this was so – ruling our this putative counterexample to the
claim that intertranslatability is not translational equivalence. As it hap-
pens this is exactly how translational equivalence is stated in Pelletier &
Urquhart [2003] – with S and S′ being forced to be similarly equivalential.

One might perhaps think that this brings into question the adequacy of
the definition of translational equivalence given by Pelletier and Urquhart,
and as it happens things are much stranger than there merely being logics
which fail to be the right sort of logics to be considered equivalent. Con-
sider the logics KD45 and S4.4 with the connectives {→,¬,�} primitive
in case 1 and the connectives {→,¬,↔,�} primitive in case 2. According
to the official definition given in Pelletier & Urquhart [2003] KD45 and
S4.4 cannot be translationally equivalent in case 1 as there is no primitive
equivalence connective in the language, while they clearly can be in case
2. This kind of language variance affecting our judgments of equivalence
is undesirable, and we will have something further to say about this in a
later section. We can of course rule out this kind of variance by allow-
ing our set of equivalence formulas ∆ be any set of equivalence formulas
which satisfy certain conditions (that τ(∆) = ∆ for example). Alternatively
we could further free ourselves from language variance issues by simply
requiring that the formulas A and τ ′(τ(A)) be synonymous in the appro-
priate logic, dropping the requirement that their synonymy be marked by
the provability of any particular formula(s) in the logic.

Taking this path we end up with a notion which is called ‘definitional
equivalence’ in Wójcicki [1988]. There two logics S and S′ are said to be
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definitionally equivalent whenever they share a common definitional ex-
tension. The idea of equivalent logics sharing a common definitional ex-
tension does quite a lot of work in Pelletier & Urquhart [2003] – where
it is shown that logics are translationally equivalent iff they share a com-
mon definitional extension – being the notion at the heart of their transla-
tional invariants (as can be seen above).13 The above considerations can be
taken to bear upon the question, raised as Problem 1 in Pelletier [1984], of
whether translational equivalence is a reasonable notion which captures
the intended force of “really the same system”. It is quite clear that the
notion of translational equivalence is perfectly reasonable when consider-
ing congruential modal logics with the classical biconditional among their
primitive connectives. Moreover, Pelletier and Urquhart make it quite
clear that these logics (and others like them) are those with which they
are concerned. So, at least in the context of normal modal logics it is def-
initely a reasonable notion, especially if we weaken our requirements on
our set of equivalence formulas to appropriately avoid the kinds of lan-
guage variance issues mentioned above. That said, we encounter some
serious problems when we attempt to apply this notion to logics which do
not have a connective among their stock of primitive connectives which
licences replacement of formulas in all contexts. We will hold off for the
moment on consideration as to whether this captures the intended force
of “really the same system” until the next section. One thing we will say
about this though, is that if this were the case (that translational equiva-
lence properly captured the intended force of “really the same system”)
then the consequences would be, perhaps, somewhat odd. For example
consider the weak modal logic S0.5, whose sole congruence is identity –
which is definable as �(�p → �q)14. We could either say that this logic

13Of course we have to be careful here regarding what counts as a definitional exten-
sion, and to go with their notion of translational equivalence Pelletier and Urquhart have
a similar notion of a definition couched in terms of equivalence connectives rather than
certain formulas being congruential.

14See Porte [1980] for more information.
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fails to be a candidate to stand in the ‘is translationally equivalent to’ re-
lation, or that it stands in that relation to no logic – making it, in a sense,
truly unique. Not only that, but this situation would be quite common
among the non-normal modal logics – all of them standing alone. While
on the topic of Problem 1 in Pelletier [1984], the examples given in this
chapter also allow us to show that translational equivalence is not trivial,
if this is taken to mean that it is not a relation which holds either between
all pairs of logics, or none of them. Not only are there pairs of logics which
fail to be translationally equivalent (take Si and Sj , GL and Grz or KT and
K for example), but there are also pairs of logics which are translationally
equivalent (S4.4 and KD45 for example). So we can see that translational
equivalence is a non-trivial property of pairs of logics at the very least in
this sense.

Returning to the topic at hand, the above example of Si and Sj illus-
trates that, not only are these logics not translationally equivalent, but
that they are not definitionally equivalent – failing to have a common
definitional extension. As mentioned above though, these logics can also
be considered to be invalid candidates for translational equivalence, and
so it would be nice to have an example of a pair of monomodal logics
which were similarly equivalential, intertranslatable and not translation-
ally equivalent. This leaves us with the following open question.

Open Question 5.2.19. Is there a pair of normal monomodal logics which
are similarly equivalential according to an equivalence connective which
is primitive in each logic such that this pair of logics are intertranslatable
but not translationally equivalent?
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5.3 Translational Equivalence as Equivalence

Between Logics

One philosophical motivation that is often put forward for thinking about
translational equivalence is the thought that it captures our informal no-
tion of what it is for two logics to be ‘really the same logic’. Often when
this is done, no justification is given as to why it is exactly this notion
which captures our folk theory of equivalence between logics. For exam-
ple, in Pelletier [1984] we are presented with the following quote.15

“So KT∇ and KT are translationally equivalent; and, I would
claim, this makes them the same logic.” [Pelletier 1984, p.432].

No justification is given as to why this should be so. Moreover, whether
translational equivalence properly captures our notion of two logics be-
ing “really the same”, a notion which we will refer to henceforth as pre-
theoretic equivalence between logics, is the first of the six problems which
figure in the title of Pelletier [1984]. With this in mind, what we will do
here is attempt to provide a systematic discussion of what formal notion
best corresponds to pre-theoretic equivalence. To do this we will first be-
gin by attempting to properly explicate our notion of pre-theoretic equiv-
alence, using this discussion to discount various characterizations of what
pre-theoretic equivalence could be.

The majority of the discussion in this section will be conducted at the
level of logics as consequence relations, with some morals drawn for the
logics as sets of formulas case a the end. Before continuing on, though,
we should probably clarify what it is for two consequence relations to be
translationally equivalent. Let us say that `1 and `2 are translationally
equivalent whenever they are rendered intertranslatable by translations
τ1 and τ2 for which the following holds for all formulas A, where p↔ q is
an equivalence formula common to both `1 and `2.

15I have changed the labels for logics to match those used above – replacing Pelletier’s
V with KT∇ and T with KT.
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`1 A↔ τ2(τ1(A)).

`2 A↔ τ1(τ2(A)).

One first attempt which one might make at trying to formalize the no-
tion of pre-theoretic equivalence is to follow the, admittedly somewhat
naive, intuition that when two logics are the same then they have the same
theorems, or contain the same sequents.

Naive Proposal: Two logics `1 and `2 are pre-theoretically
equivalent whenever they contain the same sequents.

In order to assess how reasonable, or not, this proposal is we need to be
clear about what it means for two logics, in possibly different languages,
to validate the same sequents. We could take the strict approach and say
that two sequents are the same whenever they contain the same symbols
arranged in the same order – but this would mean that trivial changes
in notation would have consequences relating to the sameness of logics,
which seems remarkably implausible. A second attempt we could make
would be something as follows. Let us say that two logics `1 and `2 val-
idate the same sequents whenever there if a function f which maps each
primitive n-ary connective of `1 to an n-ary connective of `2 such that
Γ `1 B iff f (Γ ) `2 f (B).

To see that the Naive Proposal, as spelled out above, is incorrect con-
sider the following example. Given a set of valuations V let us say that
`V is the unique consequence relation such that A1, . . . ,An `V B iff for all
v ∈ V if v(A1) = T and . . . and v(An) = T then v(B) = T . Let V1 be the set
of all valuations on the propositional language built up from {∨,¬} which
satisfy conditions (v∨) and (v¬), and V2 be the set of all valuations on the
propositional language built up from {→,¬} which satisfy conditions (v→)
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and (v¬).

(v¬) v(¬A) = T if and only if v(A) = F.

(v∨) v(A∨B) = T if and only if v(A) = T or v(B) = T .

(v→) v(A→ B) = F if and only if v(A) = T and v(B) = F.

It is easy to see that `V1
and `V2

are pre-theoretically equivalent – these
are just the {∨,¬} and {→,¬}-fragments of classical propositional logic.
However, these two logics do not verify the same sequents in the sense
described above, as `V2

p→ (q→ p), as there is only one binary connective
in each language f (A→ B) = f (A)∨ f (B), but 0V1

p∨ (q∨p). So clearly the
Naive proposal will not do.

The main intuition which was driving our conclusion that `V1
and `V2

are pre-theoretically equivalent was that we could define the connectives
of one in terms of those of the other, and vice versa. That is to say, the in-
tuition which was behind this judgment was something like the following.

Intertranslatability Proposal: Two logics `1 and `2 are pre-
theoretically equivalent whenever there are definitional trans-
lations τ1 and τ2 which render them intertranslatable.

The reason why we are concerned with definitional translations here is
because of their relationship to definitions – definitional translations be-
tween logics allow us to see how to define the connectives of the source
logic in the language of the target logic. It is easy to see that there are
definitional translations which render `V1

and `V2
intertranslatable, so we

currently have no conflicts with our accepted data. At this point, though,
there is a potential objection one could level against the Intertranslatabil-
ity Proposal – namely that this proposed characterisation is too strong –
and it is this objection which we will address now.
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5.3.1 Makinson’s Warning

One could readily agree that what is needed for two logics to be pre-
theoretically equivalent was for them to be intertranslatable, but object
to the Intertranslatability Proposal as it is outlined above on the grounds
that this characterisation is, nonetheless, too strong. The objection here
is that we don’t necessarily need our translations to be definitional ones,
surely any variable-fixed translation would do. This gives rise to the fol-
lowing counter-proposal.

Weak-Intertranslatability Proposal: Two logics `1 and `2
are pre-theoretically equivalent whenever there are variable-
fixed translations τ1 and τ2 which render them intertranslat-
able.

This proposal is usually accompanied by a certain view of what consti-
tutes a definition of a connective, and can be seen being advocated most
clearly in Segerberg [1982].16 The motivation for this view, over the In-
tertranslatability Proposal, could be seen to stem from the results appear-
ing in Makinson [1973]. What we will show here is that, in actual fact,
the anomaly which was noticed by Makinson actually shows us why we
should reject the Weak-Intertranslatability Proposal.

Let L1 be the propositional language built up in the usual way from
a countable supply of propositional variables using the connectives {→
,⊥,�}, and L2 the propositional language built using the connectives {→
,¬,�}. Define V as the set of all valuations in the language L1 which satisfy
condition (v→) in addition to the condition (v⊥), and V ′ as the set of all
valuation in the language L2 which satisfy conditions (v→) and (v¬).

(v⊥) v(⊥) = F

16Even more radically, Segerberg’s proposal allows for arbitrary translations. As it
happens though, our objection to the Weak-Intertranslatability Proposal will carry over
to the view which merely requires logics to be intertranslatable with no restrictions on
the translations.
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Following the treatment of Makinson [1973] given in Segerberg [1982] we
have the following.17

Theorem 5.3.1. `V and `V ′ are rendered intertranslatable by variable-fixed
translations.

Proof. The above result is easy to show, the translations in question being
as follows where τV and τV ′ are variable-fixed and homonymous on →
and �.

τV (⊥) = ¬(p0→ p0). τV ′ (¬A) = τV ′ (A)→⊥.

Theorem 5.3.2 (Segerberg [1982, p.102]). `V is an intersection of two of its
proper extensions.

In particular we can show that Γ `V B iff �⊥,Γ `V B and �⊥→⊥,Γ `V
B.

Theorem 5.3.3 (Segerberg [1982, p.103]). `V ′ is not the intersection of any
two of its proper extensions.

Krister Segerberg has the following to say about this situation.

“There are several ways to react to Makinson’s Warning. One
is to go on finding it disturbing and accept, as a fact of life,
that logic is language-sensitive in the way we have just seen.”
Segerberg [1982, p.104].

17Technically Segerberg appears to be thinking of equivalence between logics as re-
quiring a condition similar to equipollence below, but with no restriction placed upon
the structure of translations. Segerberg’s account of syntactic equivalence will coincide
with equipollence (considered below) when we require that the translations in question
are compositional, and with definitional equivalence if we require that the translations
are compositional and the the underlying logic is congruential.
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As is alluded to in the above passage, our notion of pre-theoretic equiv-
alence is one which is not so language-sensitive, and it would be disturb-
ing indeed if, in the general case, we had to accept as much. For this
to really be so disturbing two things are required though, firstly the re-
sults above – which are clearly fine – and secondly the idea that Weak-
Intertranslatability Proposal is correct – and that logics which are inter-
translatable by variable-fixed translations are pre-theoretically equivalent.
But why should we think this at all? Surely the above results simply show
that this cannot be the case, as logics which are intertranslatable in this
way can still vary quite wildly in ways which make this look implausible as
an explication of pre-theoretic equivalence. So it appears that ‘Makinson’s
Warning’ is a warning indeed, but not regarding the language-sensitivity
of logic.18

Thus far we have argued that our notion of pre-theoretic equivalence
is at least as strong as that given by the intertranslatability proposal. The
question then remains as to whether this properly captures our notion
of sameness between logics – after all it gives us an equivalence relation
(Theorem 5.0.9) which agrees with our evidence concerning some candi-
date logics which we think are pre-theoretically equivalent. There are two
related treatments present in the literature which extend the Intertrans-
latability proposal, both of which are motivated by similar ideas about
pre-theoretic equivalence. It is these two views which we will examine
now.

What sort of properties can a logic have? A host of different properties
are mentioned in the literature – closure under this or that rule, the in-
terpolation property, being pre-tabular etc. Does our theory of what it is
for two logics to be pre-theoretically equivalent force them to share all the
same properties? That is to say, are some properties of logics properties
of a particular representation or presentation of a logic, rather than being

18This line of argument is influenced extensively by §3.3 of Humberstone [1993], the
point at issue there having to do with definitions rather than equivalence between logics.
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tied up intimately with the logic itself? This is not entirely clear, but that
aside, we might reason that as pre-theoretic logics are ‘really just the same
logic’ in some sense, then we should be able to point at the logic which
they are both just syntactic variants of. That is to say they should share a
definitional extension, giving us the following Condition.

Extension Condition: `1 and `2 are pre-theoretically equiva-
lent whenever they share a common definitional extension.

If we take the pre-theoretically equivalent logics to be those which are
intertranslatable which also satisfy the extension condition then a pic-
ture of what pre-theoretic equivalence between logics is begins to emerge.
Say that two consequence relations `1 and `2 are Definitionally Equiva-
lent whenever they are rendered intertranslatable by translations τ and τ ′

such that for all formulas A, A and τ ′(τ(A)) are synonymous in `1 and
A and τ(τ ′(A)) are synonymous in `2 – where in this context two for-
mula A and B are synonymous according to ` whenever (with the C(·)
notion understood as wiht the statement above) C1(A), . . . ,Cn(A) ` Cn+1(A)
iff C1(B), . . . ,Cn(B) ` Cn+1(B).

Theorem 5.3.4 (Wójcicki [1988]). (i) If S and S′ are intertranslatable logics
which share a common definitional extension, then S and S′ are definitionally
equivalent. (ii) If `1 and `2 are intertranslatable logics which share a common
definitional extension, then `1 and `2 are definitionally equivalent.

One corollary of this result allows us to settle Problem 1 from Pelletier
[1984].

Corollary 5.3.5. If S and S′ are intertranslatable normal modal logics which
share a common definitional extension then S and S′ are translationally equiv-
alent.

Our rival extension of the Intertranslatability Proposal also arises from
an intuition concerning what we have when two logics are pre-theoretically
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equivalent. In this case the motivation has to do with equivalent logics
having isomorphic theory spaces – each theory of the one logic being able
to be mapped to a theory of the other in a way which preserves their in-
terrelationships. To be more precise, given a consequence relation ` and
a set of formulas Γ in the language of ` let the set Γ ` = {A|Γ ` A}. Call a
set of formulas ∆ a `-theory whenever ∆` = ∆, letting T h(`) denote the
set of all `-theories. Then the alternative proposal for what makes log-
ics equivalent, called ‘equipollence’ in Caleiro & Gonçalves [2007] is the
following.

Theory-Extension Condition: Two consequence relations `1
and `2 are equivalent whenever they are intertranslatable and
T h(`1) and T h(`2) are isomorphic.

Following Caleiro & Gonçalves [2007] we will call pairs of logics, con-
sidered as consequence relations which satisfy the Theory-Extension con-
dition ‘equipollent’, and note that we can characterize equipollence in the
following way.19

Theorem 5.3.6. Suppose that `1 and `2 are consequence relations. Then `1
and `2 are equipollent iff they are rendered intertranslatable by translations τ1

and τ2, and additionally fulfil the following conditions.

A a`1 τ2(τ1(A)).

A a`2 τ1(τ2(A)).

Now it is clear that this notion is weaker than definitional equivalence,
as every pair of definitionally equivalent consequence relations are also

19The notion under discussion in Kuhn [1977] – which is essentially what we are calling
equipolence above – will only coincide with translational equivalence when the logics
involved are assumed to be congruential, and also have an implication connective in
their object language which satisfied both modus ponens and the deduction theorem.
We presume that these kinds of conditions are what Pelletier & Urquhart [2003] have in
mind when they claim that these two notions are equivalence.
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equipollent.20 Whether equipollence is strictly weaker than definitional
equivalence is an open question.

One thing which is indeed interesting and bears on the above question,
though, is that these two notions collapse whenever the consequence rela-
tions involved are congruential in the sense that A and B are synonymous
according to ` exactly when A a` B.

Theorem 5.3.7. Suppose that `1 and `2 are congruential. Then `1 are `2 are
definitionally equivalent iff they are equipollent.

So clearly if equipollence is strictly weaker than definitional equiva-
lence the logics involved in showing this would have to be non-congruential.
So we can see that whatever pre-theoretic equivalence is, it lies some-
where in between equipollence and definitional equivalence. While this
may seem rather weak it does give us some tools for determining whether
some logics are or are not pre-theoretically equivalent. For example we
know that, if two logics are definitionally equivalent then they will be pre-
theoretically equivalent, and that if they fail to be equipollent then they
will not be pre-theoretically equivalent. This allows us to say with some
certainty, for example, that classical propositional logic and intuitionistic
propositional logic are indeed different logics – as these two logics fail to
be intertranslatable (and hence fail to be equipollent), as noted in Theo-
rem 2.6.9 of Wójcicki [1988].

Where, then, does this leave the sentiment expressed in quote from
Pelletier [1984] with which we opened this section. Since logics which
are translationally equivalent are definitionally equivalent it is certainly
true. Although, again, the problems of determining what pre-theoretic
equivalence is remain even at the propositional level – indeed they are ex-

20Proof: Suppose that `1 and `2 are definitionally equivalent – and that τ1 and τ2 are
the translations according to which they are so. Then we know that A and τ2(τ1(A)) are
synonymous according to `1 and that A a`1 A by reflexivity, and so by synonymity we
have that A a`1 τ2(τ1(A)). A similar argument gives us the corresponding condition for
`2.
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acerbated by difficulties with determining what the equivalent notion to
equipollence is in the FMLA framework. This does put us in a situation
to address Problem 1 from Pelletier [1984], as to whether translational
equivalence captures the notion of ‘really the same logic’. The answer re-
ally comes down to how we’re thinking about logic here – because two
logics could be definitionally equivalent, and hence be pre-theoretically
equivalent, while failing to have a set of equivalence formulas definable in
them – let alone a common equivalence connective. We can see an exam-
ple of this kind of phenomenon among consequence relations in Caleiro
& Gonçalves [2007], where it is shown that the SET-FMLA logics of clas-
sical disjunction and classical ternary disjunction are equipollent, but not
translationally equivalent. As it happens, though, these two logics are def-
initionally equivalent, so we can imagine a similar situation occurring in
propositional logic in the FMLA framework. So translational equivalence
isn’t pre-theoretic equivalence, but we can remain confident that when-
ever two logics are translationally equivalent they are pre-theoretically
equivalent. That is, translationally equivalent logics ‘really are the same
logic’.



VI

Translations in Non-Normal Modal
Logics

In this chapter we will be concerned with issues arising when we allow
our source and/or target logics to be non-normal modal logics. There are
a number of reasons why we might find such translations of interest, some
formal and some philosophical. For example, the original Lewis modal
systems S2 and S3 are both non-normal systems whose semantics, in-
volving non-normal worlds, are somewhat cumbersome (Lemmon [1966]).
One fact which those semantics do make obvious, though, is the relation-
ship between S2 and KT, and S3 and S4. This relationship was first noted
in Aanderaa [1969], where the following two translations are considered,
both of which are homonymous on the classical connectives (but not, as
you will note, variable-fixed).

τ−(pi) = pi+1 τ−(�A) = �τ−(A)∧ p0.

τ+(pi) = pi τ+(�A) = �>→�τ+(A).

135



136CHAPTER 6. TRANSLATIONS IN NON-NORMAL MODAL LOGICS

Before we continue on, it is worth noting that already τ− is not of the kind
we have been primarily concerned with – those being definitional transla-
tions, which are both compositional and also variable-fixed.1 It deviates
further from the sorts of translations we have been considering though, in
that what Aandrea showed was not that A ∈ S2 if and only if τ−(A) ∈ KT,
but rather the following.

Theorem 6.0.8. For all formulas A, we have the following.

(ai) A ∈ S2 if and only if p0→ τ−(A) ∈KT.

(aii) A ∈KT if and only if τ+(A) ∈ S2.

(bi) A ∈ S3 if and only if p0→ τ−(A) ∈ S4.

(bii) A ∈ S4 if and only if τ+(A) ∈ S3.

As mentioned in Chapter 2, translations like τ− are technically T5 type
translations, despite being obviously different from most translations which
we might be concerned with. Largely, though, we will continue to focus
on definitional translations even among the realms of non-normal modal
logics.

One area in philosophical logic where people are often concerned with
definitional translations involving non-normal modal logics is in the study
of contingency operators. The usual problem here is to determine what
the logic of the operator ∇p =def 3p ∧3¬p – interpreted to mean ‘it is
contingent whether p’ – is over a given normal modal logic S (i.e. what
S(∇) is). It is easy to show that for all consistent normal modal logics S(∇)
will not be normal. To see this consider the τ∇-translation of �>. This
will be the formula 3>∧3⊥. The first conjunct will be provable in all ex-
tensions of KD, but the second conjunct is not provable in any consistent
normal modal logic. This means that the problem of determining the con-
tingency fragment of a given normal modal logic is the problem of finding
the unique non-normal modal logic S′ such that, for all formulas A we

1We will meet τ+ again soon, where we will more suggestively call it τ >�.
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have the following.

A ∈ S′ if and only if τ∇(A) ∈ S.

For a wide range of common normal modal logics this question has been
answered (Kuhn [1995] and Humberstone [1995]). One might also won-
der which logics S can be faithfully embedded into their own contingency
fragment. This question is considered at length in Cresswell [1988], where
it is shown that all normal extensions of KT can be faithfully embedded
into their own contingency fragments via the translation τ�. Cresswell
also gives an example of a normal modal logic which can be faithfully em-
bedded into its own contingency fragment which isn’t an extension of KT
– namely the normal extension of K by the following formula.

Cr : �p↔ ((�p∨�¬p)∧ (p↔ (�(�p∨�¬p)∨�¬(�p∨�¬p))))

Using the translation which translate �p as ¬∇p ∧ (p↔ ¬∇¬∇p)2 we are
able to faithfully embed KCr into KCr(∇). That T < KCr is easy to show,
the interested reader being referred to Cresswell [1988].

The rest of this chapter is broken up into three sections. First in §1 we
will look at some issues which arise concerning the modal logic of (morally
relevant) ability – which Anthony Kenny persuasively argued in Kenny
[1976] must be non-normal. In particular we will focus on some issues
which arise out of a paper by M. A. Brown. In §2 we will look at a trans-
lation due to S.K. Thomason which faithfully embeds multi-modal logics
into monomodal logics, focusing in particular on the applications of this
translation to the problem of faithfully embedding E into K. We will close
that section by looking at some other embeddings involving non-normal
modal logics, before then going on in §3 to give a simplified version of the
translations from §2.

2To see why this is the case note that we could have equivalently written Cr as the
formula �p↔ (¬∇p∧ (p↔¬∇¬∇p)), in this case taking ∇p as an abbreviation for 3p∧
3¬p.
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6.1 Translations and the Logic of Ability

We will begin our look at translations involving non-normal modal logics
by considering a motivating example drawn from Brown [1988]. Therein
an attempt is made to try and determine what the modal logic of (morally
relevant) ability is – the modal logic for which we can read “|A” as saying
that I can bring about the circumstances in which A is true.3 Brown, fol-
lowing up on comments made in Kenny [1976] notes that this logic cannot
be an extension of the smallest normal modal logic K. To see this consider
the following instance of K.

K : |(p∨ q)→ (|p∨|q).

Under the above interpretation K can be read as saying that if I can
bring it about that p∨ q is true, then I can bring about the truth either of
p or of q. To see that this makes K false under the intended interpretation
Kenny notes that, if presented with a deck of cards I am able to bring it
about that the card I pick will be red or the card I pick will be black is true.
I am not, on the other hand (assuming that we are dealing with a standard
deck of cards) able to bring it about that the card I pick will be red is true,
nor can I bring it about that the card I pick will be black is true.

With these considerations in mind Brown considers the possibility of
treating the logic of the can of ability as being an extension of E the small-
est congruential modal logic.4 Brown introduces the following semantic
clause for the modal operator which we have written as |.

M |=x |A ⇐⇒ ∃X ∈N (x) such that ∀y ∈ XM |=y A. (6.1)

3We could equally well have introduced our intended interpretation by relativizing
our modal operator to an agent, as is often done in epistemic logic. Then we would be
saying that “|aA” means that agent a can bring about the circumstances in which A is
true. We will leave our modal operators unsubscripted here in the interests of brevity.

4The following material appears in French [2009]
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Here we are thinking of our semantic structures as being neighbour-
hood models. We will call a structure M = 〈W,N,V 〉 a neighbourhood
model whenever W is a non-empty set, N a function from W to ℘(℘(W )),
and V a function from the propositional variables to subsets of W .5 For
convenience we will often refer to sets X ∈ N (x) as the neighbourhoods of
x. The idea behind the above truth clause is that we are to think of the
neighbourhoods of x as being the “outcomes” of our unspecified agent’s
possible actions in the situation x. An agent is thus able to bring it about
that A if there is an outcome relative to x throughout which A is true.

Brown’s full logic also contains an operator } which can be thought of
as expressing might – where ⊞A expresses that I will do A. The semantic
clause Brown gives for his might operator } is the following.

M |=x }A ⇐⇒ ∃X ∈N (x) such that ∃y ∈ X andM |=y A. (6.2)

We can characterize Brown’s logic of action and ability, called V in honour
of Peter van Inwagen, as being the set of all formulas A constructed out
of the propositional language containing the operators| and}which are
valid on all neighbourhood frames when we evaluate | and } according
to (6.1) and (6.2).

Having introduced the above semantic clause (6.1) for the modal oper-
ator | Brown then goes on to say that:

“We could also give a complete axiomatization of a subsystem
using only the operator| and its dual. The obvious adaptation
of the classical system E would serve.” [Brown 1988, p.14].

The “subsystem using only the operator |” (which we will henceforth
call V

|
) would of course be the set of all formulas A containing only the

operator | (in addition to the classical connectives) which are valid on all
neighbourhood frames. It is clear from the context in which Brown says

5The neighbourhood semantics appear in Chellas [1980, p.207f.], where neighbour-
hood models are referred to as minimal models.
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this that he is taking the ‘obvious adaptation’ to be that of replacing all
occurrences of| and its dual ⊠with 3 and �. This claim is simply untrue
– it is not the ‘obvious adaptation’ of E, but rather that of EM the smallest
monotonic modal logic which would serve in this regard. Before going on
to show that this is the case it is worth considering what the diagnosis for
Brown’s mistake is. Consider the following standard semantic clause for
� in a neighbourhood modelM – where ||A|| is the set of all points x ∈W
such that A is true at x inM.6

M |=x �A ⇐⇒ ||A|| ∈N (x). (6.3)

It is well known that the logic determined by the class of all neigh-
bourhood frames when � is interpreted according to (6.3) is the smallest
congruential modal logic E. By contrast, in the above quotation Brown is
saying that the modal logic determined by the class of all neighbourhood
frames interpreted according to (6.1) is also E, when this in fact picks out
EM.

A similar semantics for weak modal logics to that considered by Brown
is given in Jennings & Schotch [1981]. There the semantic structures under
consideration are locale frames, where 〈W,N 〉 is a locale frame ifW , ∅ and
N : W → ℘(℘(W )), where N also satisfies the following condition (called
Minimality).

∀w ∈W,∀X ⊆W (X ∈N (w)⇒∀Y (Y ⊆ X⇒ Y <N (w))).

In Jennings & Schotch [1981] only logics which are determined by locale
frames which also satisfy the condition that N (w) , ∅ for all w ∈W (which
corresponds to the validity of the formula N (=�>)) are under consider-
ation, with the evaluation clause for �B being as follows, where where

6Whenever there is any ambiguity as to which model we are referring to when we
say ||A|| we will use a superscript to indicate the model in question, making the above
definition be for ||A||M
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M = 〈W,N,V 〉 is a model on a locale frame.

M |=x �B if and only if ∃X ∈N (x) such that X ⊆ ||B||. (6.4)

Schotch & Jennings show that the logic determined by the class of all such
locale frames when we evaluate �B according to (6.4) is the modal logic
EMN. As it is the condition that N (w) be non-empty for all w ∈W which
makes N valid, this would suggest that the smallest modal logic deter-
mined by the class of all locale frames would be exactly EM. Given The-
orem 6.1.2 this would lead us to believe that the [Minimality] condition
above is doing no real work insofar as determining what formulas are valid
on locale frames – at least when we place no further conditions upon L.

Leaving this comparative line of reasoning aside we will now go on to
show that the set of all formulas valid on the class of all neighbourhood
frames using the evaluation clause (6.1) (with | reconstrued as �) is the
weakest monotonic modal logic EM – the congruential extension of the
logic E by the following formula M.

M : �(A∧B)→ (�A∧�B).

Let us call N (x) the neighbourhood set of x, and say that a neighbour-
hood set is supplemented whenever it fulfils the following condition:

if X ⊆ Y and X ∈N (x) then Y ∈N (x).

It is well known that the logic EM is determined by the class of all
neighbourhood frames whose neighbourhoods are supplemented (hence-
forth, supplemented neighbourhood frames), this result appearing as Theo-
rem 9.10 of Chellas [1980, p.258].

Definition 6.1.1 (Chellas [1980]). Given a neighbourhood model M =
〈W,N,V 〉 let the supplementation of M be the model M+ = 〈W,N+,V 〉,
where N+ is the closure of N under supersets. That is to say, X ∈N+(x) iff
Y ⊆ X for some Y ∈N (x).
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Theorem 6.1.2. LetM be a neighbourhood model, andM+ be its supplemen-
tation. Then for all formulas A and all points x ∈W we have the following:

M |=x |A if and only ifM+ |=x �A.

Where | is evaluated according to (6.1) and � according to (6.3).

Proof. For the ‘only if’ direction suppose thatM |=x |A. Then there is a
set X ⊆ ||A|| such that X ∈ N (x). So as N (x) ⊆ N+(x) then X ∈ N+(x). As
||A|| ⊇ X we know that ||A|| ∈N (x) it follows thatM+ |=x �A.

For the ‘if’ direction suppose thatM+ |=x �A. So we know that ||A|| ∈
N+(x) so by the definition of N+(x) we know that there is an X ⊆ ||A|| such
that X ∈N (x) and thus thatM |=x |A.

What we will now show is that the logic of the modality 3 over V
}

is
the smallest monotonic modal logic EM (Theorem 6.1.3). We will then go
on to show that 3 and � are analogous over EM (Theorem 6.1.5), and thus
that V

|
= EM (Theorem 6.1.6).

Theorem 6.1.3. V
|

(3) = EM.

Proof. Follows from Theorem 6.1.2 and the fact that EM is determined by
the class of all supplemented neighbourhood frames.

Lemma 6.1.4. Let N = 〈W,N,V 〉 be a supplemented neighbourhood model,
and N d = 〈W,N d ,V 〉 be the model in which, for all X ⊆ W and x ∈ W we
have that X ∈ N (x) ⇐⇒ W rX < N d(x). Then for all formulas A and points
x ∈W we have the following:

N |=x A if and only ifN d |=x τ3(A)

Proof. By induction upon the complexity of A – the only case of interest
being that where A = �B for some formula B.

For the ‘only if’ direction suppose that N |=x �B. Then we know that
||B|| ∈ N (x). By the inductive hypothesis we know that for all such points
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z ∈ ||B|| thatN d |=x τ3(B). By the definition ofN d we know thatWr||B||N <
N d(x), and that as ||B||N = ||τ3(B)||N d

we know thatW r ||τ3(B)||N d ∈N d(x),
from which it follows thatN d |=x 3τ3(B).

For the ‘if’ direction suppose that N d |=x 3τ3(B). It follows that W r
||τ3(B)|| < N d . By the inductive hypothesis and the definition of N d it fol-
lows that ||B|| ∈N (x) and thus thatN |=x �B.

Theorem 6.1.5. EM(3) = EM.

Proof. What we want to show is that, for all formulas A we have the fol-
lowing.

A ∈ EM if and only if τ3(A) ∈ EM. (6.5)

The ‘only if’ direction follows from Definition 8.7 in Chellas [1980,
p.234] and the fact that EM is closed under the rule RM� (Theorem 8.12(1)
in Chellas [1980, p.238]).

For the ‘if’ direction suppose that A < EM. Then there is a supple-
mented neighbourhood model N and a point x ∈ W such that N 6|=x A.
By Lemma 6.1.4 it follows that N d 6|=x τ3(A), and that as N d can be easily
seen to be supplemented whenever N is it follows that τ3(A) < EM and
thus that A < EM(3) as desired.

Theorem 6.1.6. V
|

= EM.

Proof. V
|

(3) = EM by Theorem 6.1.3 , which by Theorem 6.1.5 means
that (V

|
(3))(3) = EM(3). It is easy to see that (S(3))(3) = S for any modal

logic S, and hence that V
|

= EM.

6.1.1 Relationship between K and EM

One of the other results present in Brown [1988] is that we can faith-
fully embed V into K using a translation τ which interprets } as 33 and
| as 3�. We can consider τ as consisting of two separate translations,
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the source logics for which are the V
}

and V
|

subsystems of the full sys-
tem V . Considering the two translations separately in this way provides
us with some interesting results. Firstly the fact that K is iterative (i.e.
that K(�n) = K for all n ∈ Nat, as shown on p.42) indicates to us in a
quite direct way that the |-subsystem of V is just the logic K. What is
more interesting though is that the translation τ faithfully embeds the |-
subsystem of V in K. In light of the above result concerning the fact that
the |-subsystem of V is none other than EM we can recast this result as
showing that τ3� faithfully embeds EM into K.

What makes this result doubly interesting is that it is well known that
we can faithfully embed EM into bimodal K (the modal logic with two
modal operators �1 and �2 which are both modal operators for K) via the
translation which replaces � with 31�2 (Kracht & Wolter [1999]). We will
return to this point later. In the interests of completeness we will give the
proofs alluded to in Brown [1988, p.15f.], recasting them in terms of sup-
plemented neighbourhood models using evaluation clause (6.3), rather
than arbitrary neighbourhood models using evaluation clause (6.1).

Definition 6.1.7. Given a model M = 〈W,R,V 〉 where 〈W,R〉 is a rela-
tional frame, construct a neighbourhood modelNR = 〈W,NR,V 〉 where:

NR(x) = {R(y)|y ∈ R(x)}.

Theorem 6.1.8. LetM = 〈W,R,V 〉 be a model on a relational frame 〈W,R〉,
and N +

R = 〈W,N+
R ,V 〉 be the supplementation of the model NR. Then for all

formulas A and all points x ∈W we have the following.

M |=x τ3�(A) if and only ifN +
R |=x A.

Proof. By induction upon the complexity of A, the only case of interest
being that where A = �B for some formula B.

For the ‘only if’ direction suppose thatM |=x 3�τ3�(B). The there is a
point y such that Rxy andM |=y �τ3�(B). Thus for all points z such that
Ryz we know thatM |=z τ3�(B). By the inductive hypothesis we can reason
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that for all such points z, N +
R |=z B. As R(y) ∈ NR(x) and R(y) ⊆ ||A|| it is

clear thatN +
R |=x �B.

For the ‘if’ direction suppose thatN +
R |=x �B. Then we know that ||B|| ∈

N+
R (x). As all the neighbourhoods of N+

R are of the form R(y) for some
y such that Rxy it is clear that, for all such points z ∈ R(y) we have that
N +
R |=z B. By the inductive hypothesis we know thatM |=z τ3�(B). As these

points are all in R(y) we know thatM |=y �τ3�(B). Lastly, as Rxy it follows
thatM |=x 3�τ3�(B).

For the following Theorem we will need the appropriate modification
of the following elegant model construction given in Brown [1988, p.15],
where we add new points corresponding to each neighbourhood which
bear the accessibility relation to all of their members.

Definition 6.1.9. Given a neighbourhood model N = 〈W,N,V 〉 construct
a model on a relational frameMN = 〈WN ,RN ,V 〉 as follows.

• WN =W ∪ {〈x,X〉|X ∈N (x)}

• RNxy ⇐⇒ (∃X ⊆W )[(y = 〈x,X〉)∨∃z ∈W (x = 〈z,X〉&y ∈ X)]

Theorem 6.1.10. LetN = 〈W,N,V 〉 be a supplemented neighbourhood model,
and MN = 〈WN ,RN ,V 〉 be as above. Then for all formulas A and all points
x ∈W we have the following.

N |=x A if and only ifMN |=x τ3�(A).

Proof. By induction upon the complexity of A, the only case of interest
being that where A = �B for some formula B.

For the ‘only if’ direction suppose that N |=x �B. Then we know that
||B|| ∈ N (x). Thus, by the inductive hypothesis we know thatM |=y τ3�(B)
for all points y ∈ ||B||. By the definition of RN we also know that there is
a point 〈x,X〉 (where X = ||B||N ) such that R〈x,X〉, y for all such points y.
Thus we can see thatMN |=〈x,X〉 �τ3�(B). Again by the definition of RN we
know that Rx〈x,X〉 and thus thatMN |=x 3�τ3�(B).
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For the ‘if’ direction suppose that MN |=x 3�τ3�(B). Then there is a
point y ∈ RN (x) such that MN |=y �τ3�(B). By the definition of RN we
know that all such points y are of the form 〈x,X〉 for some neighbourhood
X ∈ N (x). Letting y = 〈x,X〉 we know by the definition of RN that for
all points z ∈ X that R〈x,X〉z and that MN |=z τ3�(B). By the inductive
hypothesis this means that N |=z B for all points z ∈ X and that X ∈ N (x).
Thus we can see that X ⊆ ||B|| and consequently by supplementation we
know that ||B|| ∈N (x), from which it follows thatN |=x �B.

We are now in a position to show that we can faithfully embed EM into
K using the translation τ3�.

Theorem 6.1.11. EM is faithfully embedded into K by the translation τ3�.

Proof. What we need to show is that the following holds for all formulas
A.

A ∈ EM if and only if τ3�(A) ∈K. (6.6)

For the ‘only if’ direction suppose that τ3�(A) < K. Then there is a Kripke
modelM = 〈W,R,V 〉 and a point x ∈ W such thatM 6|=x τ3�(A). By The-
orem 6.1.8 it follows that N +

R 6|=x A. As N +
R is supplemented and thus a

model on a neighbourhood frame for EM, we can conclude that A < EM.

For the ‘if’ direction suppose that A < EM. Then there is a supple-
mented neighbourhood modelN = 〈W,N,V 〉 and a point x ∈W such that
N 6|=x A. By Theorem 6.1.10 we know thatMN 6|=x τ3�(A) and, as this is a
Kripke model, that τ3�(A) <K.

Theorem 6.1.12. If, for some modality ∇ we have that S(∇) = EM for some
modal logic S then S(∇) = EM, where ∇ is the dual of ∇

Proof. Suppose that S(∇) = EM. Then as EM(3) = EM we know that S(∇) =
EM(3). It is easy to verify that S′(3) = S′′ ⇐⇒ S′′(3) = S′ and thus that
(S(∇))(3) = S(∇) = EM as desired.
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Let us say that a sequence O1 . . .On where each Oi ∈ {�,3} is a mixed
linear modality iff there are Oi ,Oj such that 1 ≤ i, j ≤ n and Oi = � and
Oj = 3. In view of the above theorem we know that, when we are con-
cerned with the analogousness of mixed linear modalities in K we can
assume that they are all of the form O1 . . .On3�On+1 . . .On+m. What we
will now proceed to do is to show that all mixed linear modalities in K
are analogous to 3�, for which we need to the following model construc-
tion. For the following construction we will need to add, for each point
x ∈W (where W is the set of worlds in the neighbourhood modelN ) a set
of new points {x−1 , . . . ,x−n} for some (fixed) n ∈ Nat, as well as also adding
the set {x+

1 , . . . ,x
+
m} again for some (fixed) m ∈ Nat. Let us call the set of all

such new points W −n and W +
m respectively. Additionally let us define the

following relations on the sets W −n and W +
m:

R−n = {〈x−i ,x
−
i+1〉|1 ≤ i < n}. (6.7)

R+
m = {〈y+

j , y
+
j+1〉|1 ≤ j < m}. (6.8)

We are now in a position to define the new model we will need.

Definition 6.1.13. Let MN = 〈WN ,RN ,V 〉 be as in Definition 6.1.9. Let
us define the new modelMm

n = 〈Wm
n ,R

m
n ,V 〉 for some fixed m,n ∈ Nat as

follows.

• Wm
n :=WN ∪W −n ∪W +

m.

• Rmn := R−n ∪R+
m ∪ {〈x,x−1〉|x ∈W } ∪ {〈x−n , y〉|RNxy and x ∈W }∪

{〈x,y+
1 〉|RNxy and y ∈W } ∪ {〈y+

m, y〉|y ∈W }.

Theorem 6.1.14. LetMN be as in Definition 6.1.9, andMm
n be constructed

from it as per Definition 6.1.13. Then for all points x ∈W , and all formulas A
we have the following.

MN |=x τ3�(A) if and only ifMm
n |=x τ(A).

Where τ(�A) =O1 . . .On3�On+1 . . .On+mτ(A), for any mixed linear modality
O1 . . .On3�On+1 . . .On+m.
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Proof. By induction upon the complexity of A, the only case of interest
being that where A = �B for some formula B.

For the ‘only if’ direction suppose thatMN |=x 3�τ3�(B). Then there
is a points 〈x,X〉 such that RNx〈x,X〉 andMN |=〈x,X〉 �τ3�(B). This means
that for all points z such that R〈x,X〉z we have thatMN |=z τ3�(B). By the
inductive hypothesis it follows then that Mm

n |=z τ(B). As RN 〈x,X〉z and
z ∈W we know that for all such z, (Rmn )m+1〈x,X〉z and thus thatMm

n |=〈x,X〉
�O1 . . .Omτ(B). As RNx〈x,X〉 and x ∈W it follows that (Rmn )n+1x,〈x,X〉 and
thus thatMm

n |=x O1 . . .On3�On+1 . . .On+mτ(B).

For the ‘if’ direction suppose thatMm
n |=x O1 . . .On3�On+1 . . .On+mτ(A).

Then as x ∈ W we know that (Rmn )n+1x〈x,X〉 for some point 〈x,X〉 ∈ WN

such thatMm
n |=〈x,X〉 �On+1 . . .On+mτ(A). Thus we know that for all points

z such that (Rmn )m+1〈x,X〉z thatMm
n |=z τ(B). By the inductive hypothesis

we know that MN |=z τ3�(B). As (Rmn )m+1〈x,X〉z we know that RN 〈x,X〉z
for all such points z, and thus thatMN |=〈x,X〉 �τ3�(B). By the definition
of RN we also know that RNx〈x,X〉 and thus thatMN |=x 3�τ3�(B).

Theorem 6.1.15. For all mixed linear modalities ∇ we have that K(∇) = EM.

Proof. As every modality is monotone in K it is clear that EM ⊆ K(∇). To
show the reverse inclusion suppose that A < EM. By the completeness of
EM w.r.t. supplemented neighbourhood models it follows that there is a
supplemented neighbourhood model N = 〈W,N,V 〉 and a point x ∈ W
such that N 6|=x A. By Theorem 6.1.10 we know that MN 6|=x τ3�(A).
Using Theorem 6.1.12 can assume without loss of generality that ∇ =
O1 . . .On3�On+1 . . .On+m, and thus by Theorem 6.1.14 that Mm

n 6|=x τ(A).
Thus asMm

n is a model on a frame for K it follows that τ(A) < K and thus
that A <K(∇).

Corollary 6.1.16. For all mixed linear modalities∇ and∇′ we have that K(∇) =
K(∇′).
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6.1.2 Some Extensions of the Result

As we mentioned above, similar results to ours can be found in Kracht &
Wolter [1999]. There it is shown that we can faithfully embed EM into
bimodal K – the logic sometimes called K × K or K2 – using the trans-
lation (·)D for which (�A)D = 31�2(A)D . The intuitive idea behind this
translation is that �1 is being used to quantify over neighbourhoods, and
�2 to quantify within the neighbourhoods. One of the more interesting
results obtained there is the following. For any set of formulas Γ , we de-
fine EM+mΓ to be the smallest monotonic modal logic containing Γ , and
similarly E+eΓ to be the smallest congruential modal logic containing Γ .

Theorem 6.1.17 (Kracht & Wolter [1999, p.109]). For all formulasAwe have
the following:

A ∈ EM +m Γ if and only if (A)D ∈K2 ⊕ Γ D .

Thus to every monotonic modal logic there corresponds at least one
normal bimodal logic – namely the logic which the above theorem tells
us it can be faithfully embedded into by (·)D . Providing a general re-
sult like this is not possible without resorting to more elaborate seman-
tic structures (in this case general frames). In particular, without resort-
ing to structures such that every monotonic modal logic is determined by
some class of them. Perhaps more interesting, though, is the fact that the
translation τ3� only establishes a correspondence like that above between
monotonic modal logics and quasi-normal modal logics (as opposed to
normal modal logics, as above).

Theorem 6.1.18. For all formulas A we have the following:

A ∈ EM +m Γ if and only if τ3�(A) ∈K + τ3�(Γ ).

Proof. For the ‘if’ direction suppose that A < EM +m Γ . Then there is a
model N = 〈W,N,V 〉 for EM +m Γ , and a point x ∈ W such that N 6|=x A.
By Theorem 6.1.10 we know that the modelMN such thatMN 6|=x τ3�(A).
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Furthermore, by Theorem 6.1.10 it also follows that for all points y ∈W it
follows thatMN |=y τ3�(A). LettingD =W it follows that 〈WN ,RN ,D,V 〉 6|=x
τ3�(A). It is easy to see that this is a model on a frame w.d.e. for K+τ3�(Γ )
it follows that τ3�(A) <K + τ3�(Γ ).

The ‘only if’ direction follows trivially.

Thus, for example we are able to see that τ3� faithfully embeds the
monotonic modal logic EMT (i.e. EM +m T) into K + B.

Thus is is quite easy to show that to every monotonic modal logic there
corresponds a quasi-normal modal logic – the quasi normal modal logic
into which it can be faithfully embedded by τ3�. One obvious question to
ask is whether we can strengthen the + in the above theorem to ⊕ – that is
to say, can every monotonic modal logic EM +m Γ be faithfully embedded
into the normal modal logic K⊕ τ3�(Γ ).

To see that this is not the case consider what happens when we let
Γ = {(�p ∧�q) → �(p ∧ q),�>} – that is, what happens when we let the
source logic of our translation be K itself. In this case the set τ3�(Γ ) is
K-equivalent to the set {H,3>}.7

H : (3�p∧3�q)→3�(p∧ q).

Thus in order for this to hold we would have to be able to show that
τ3� faithfully embeds K into KDH. But it is easy to see that every ex-
tension of KD proves �3> (because KD does) which is just τ3�(3>) –
a K-unprovable formula. As it happens even if we let Γ = {(�p ∧�q)→
�(p ∧ q),�>,3>} then τ3�(Γ ) again is K-equivalent to {H,3>}. In this
case we fare no better, this time the problem formula being recorded in
Proposition 3.2 of Humberstone [2006]. As a consequence, we will have to
content ourselves with Theorem 6.1.18 as it stands, and leave the project
of seeing whether it can be generalized further to one side.

7We have already encountered the logic KDH in connection with the τ3� translation
on p.73. For further information the reader should consult Humberstone [2006].
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Theorem 6.1.18 can be interpreted as telling us that the translation
τ3� induces a map f whose domain is the set of all monotonic extensions
of EM, and whose co-domain is some subset of the extensions of K. One
obvious line of investigation then is to determine some of the properties
of this mapping f – whose intended definition is as follows.

f (EM + Γ ) = K + τ3�(Γ ). (6.9)

It is easy to show that f is ∩-semilattice morphism. Firstly we might want
to know what the maximal “quasi-normal companions” are. That is, what
are the greatest elements (under ⊆) of the co-domain of f . Henceforth, in
the interests of brevity, we will denote the co-domain of f as ∆. As a first
step towards characterizing the maximal elements of ∆ we will recall the
following result from Kracht & Wolter [1999].

Proposition 6.1.19. Every consistent monotonic modal logic is a sub-logic of
the logic determined by one of the following neighbourhood frames.

F1 = 〈{0},∅〉 F2 = 〈{0},〈0, {∅}〉〉 F3 = 〈{0},〈0, {{0}}〉〉

The neighbourhood frames F2 and F3 can be quite easily shown to de-
termine the logics KVer and KT!. The remaining frame, F1 determines the
logic EM + 3p. Consider now the following three relational frames.

F1N = 〈{0},∅〉
F2N = 〈{0,〈0,∅〉}, {〈0,〈0,∅〉〉}〉
F3N = 〈{0,〈0, {0}〉}, {〈0,〈0, {0}〉〉,〈〈0, {0}〉,0〉}〉.

It is quite easy to see that these frames result from the neighbourhood
frames Fi above by applying the construction in Definition 6.1.9. More-
over, it is easy to see that the logics determined by the above frames when
the distinguished element is 0 are the logics into which those determined
by the neighbourhood frames Fi can be faithfully embedded by τ3�.
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Proposition 6.1.20. For all formulas A we have the following.

(i) A ∈ EM + 3p if and only if τ3�(A) ∈K +�3p

(ii) A ∈KVer if and only if τ3�(A) ∈K + 3�p

(iii) A ∈KT! if and only if τ3�(A) ∈K + {H,3�>,3�p↔ p}

It bears noting that, even if the logic K + 3�p is the same as the logic
K + H + 3�p – all being instances of the tautology A→ >. As all of the
source logics listed in the above Proposition are all and only the Post-
complete monotonic modal logics, it follows that the logics above exhaust
the elements of ∆.

6.2 Translations in Congruential Modal Logics

In Kracht & Wolter [1999] it is shown that we can faithfully embed E into
trimodal K using the modal-to-modal translation (·)F for which (�A)F =
31(�2(A)F∧�3¬(A)F). From a semantic point of view the idea is to think of
31 as quantifying over neighbourhoods, �2 as quantifying within neigh-
bourhoods, and �3 as quantifying over their complements – thus allow-
ing us to mimic the truth conditions for �-formulas within a neighbour-
hood model. In Gasquet & Herzig [1996] it is noted that we can simplify
this translation to one which faithfully embeds E in bimodal K by making
�1 and �2 the same operator – thus making the new translation be such
that (�A)F

′
= 31(�1(A)F

′ ∧�2¬(A)F
′
). One might then wonder whether

a further simplification is possible, allowing us to embed E faithfully in
monomodal K. As it happens the simplification cannot be of the same na-
ture as that given in Gasquet & Herzig [1996] – as the translation (·)F′′ for
which (�A)F

′′
= 3(�(A)F

′′ ∧�¬(A)F
′′
) fails to faithfully embed E into K,

there being K-provable formulas of the form (A)F
′′

for which A is not E-
provable.8 Consequently we will have to look elsewhere for a translation

8For example, let A be the formula “�p↔ �¬p”, whose (·)F′′ -translation is provable
in every congruential modal logic.
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which faithfully embeds E into monomodal K.
Translations of this sort are notoriously hard to find, the ones which

are extractable from the literature being extremely complex. Before going
on to give our simple translation we will first in this section survey some
of the potential translations which might spring to mind in order to give
the reader a feel for the difficulty of finding such translations.

6.2.1 Thomason’s Translation

In Kracht & Wolter [1999], building on some work done in the 1970s by
S.K. Thomason (Thomason [1974; 1976]), we are presented with a general
account of how to faithfully embed all bimodal normal modal logics into
normal monomodal modal logics. The account given there, while being
quite novel in many ways, is somewhat lacking in details in some areas –
which we will endeavour to fill in here. The strategy implied by the title
of Kracht & Wolter [1999] is a two step process for faithfully embedding
arbitrary modal logics into normal monomodal logics. The first step is to
show that we can faithfully embed every modal logic from a given class
of modal logics (i.e. the congruential modal logics) into the extensions of
a particular normal multi-modal logic. In the second step we then apply
Thomason’s translation to faithfully embed the extensions of this normal
multi-modal logic into the extensions of a particular normal monomodal
logic.

Kracht and Wolter’s treatment of the second step of this process is
somewhat unfulfilling, as a great number of the results of the first type
they address require us to embed the relevant class of modal logics into
normal extensions of tri-modal K, while their discussion of the Thomason
translation only deals with the bimodal case! What we will do in this sec-
tion is look at this trimodal version of the Thomason result, focusing in
particular on how it applies to the translation (·)F which embeds E into
K3. In particular we will compare this translation to the translation of E
into monomodal K we get via the embedding (·)F′ of E into K2, and it is
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this translation we will discuss first. Before doing this though we will first
need to introduce the bimodal version of the Thomason translation T2.9

In discussing the bimodal version of the Thomason translation, T2, we
will (in the interests of readability) make use of the following abbrevia-
tions: t = 2⊥, w = 32⊥ and b = ¬t∧¬w.10 The bimodal Thomason transla-
tion – T2 – is the following function which maps formulas of the language
of bimodal logic to formulas of the language of monomodal logic.

T2(pi) = pi

T2(A∧B) = T2(A)∧T2(B)

T2(¬A) = ¬T2(A)

T2(21A) = 2(w→ T2(A))

T2(22A) = 2(b→2(b→2(w→ T2(A)))).

We will occasionally use 2wA as an abbreviation for 2(w→ A) and 2bA

as an abbreviation for 2(b→ A) and 2tA as an abbreviation for 2(t→ A).
It bears noting that this translation is very different from the translation –
which we will dub T′2 given in Thomason [1974, p.550] – which is exactly
like T2 except that T′2(pi) = w∧pi and T′2(¬A) = w∧¬T′2(A). This translation
is also different from the one given in Kracht [1999, p.398] – T′′2 – which is
identical to T2 except that T′′2 (¬A) = w∧¬T′′2 (A). 11

9We will adopt the convention here of using Ti to designate the Thomason-style trans-
lation which faithfully embeds Ki into K.

10These labels are taken from Kracht & Wolter [1999], where they are mnemonic for
‘terminal’, ‘white’ and ‘black’ respectively – Kracht and Wolter using 2 and � for what
we’re calling 21 and 22.

11This translation does not do the work which Kracht sets for it – the crucial re-
sult (Proposition 6.6.14 of Kracht [1999]) being incorrect. Consider the model M =
〈{x,y}, {〈x,y〉},∅,V 〉 where V (p) = {x}. Let V ′(p) = {x◦,x•} – then V ′ is a valuation such
that V ′(p) ∩W ◦ = (V (p))◦. It is easy to see that Ms |=x◦ w ∧3p (alias. T′′2 (31p)) while
M 6|=x 31p – this being a false instance of Proposition 6.6.14 in Kracht [1999]. The incor-
rectness of this crucial result makes all the results there concerning the Thomason-style
translation T′′2 incorrect. This problem can be avoided if we alter the translation so that
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Definition 6.2.1. LetM = 〈W,R1,R2,V 〉 be a bimodal model, and {w,b, t}
be new points not in W , with xw and xb being abbreviations for 〈x,w〉
and 〈x,b〉. Then let us construct a new modelMsim = 〈W sim,Rsim,V sim〉 as
follows.12

• W sim := W × {w,b} ∪ {t}

• Rw := {〈xw, yw〉|R1xy}

• Rb := {〈xb, yb〉|R2xy}

• R∗ := {〈xw, t〉,〈xw,xb〉,〈xb,xw〉|x ∈W }

• Rsim := Rw ∪Rb ∪R∗

• V sim(pi) := V (pi)× {w}.

Theorem 6.2.2 (Kracht & Wolter [1999, p.122]). LetM = 〈W,R1,R2,V 〉 be
a bimodal model, andMsim be as above. Then for all bimodal formulas A and
all points x ∈W we have the following.

M |=x A if and only ifMsim |=xw T2(A).

The second step of the Kracht & Wolter Reduction (of normal bimodal
logics to normal monomodal logics) is to then, using the above result,
show that we can faithfully embed any given normal bimodal logic S into
the logic determined by a particular class of frames (the Sim-Frames for
S). Some syntactic results concerning the bimodal Thomason translation
can be found in Kracht & Wolter [1999, p.122].

T′′2 (pi) = w ∧ pi – making it more closely resemble the translation T′2 from Thomason
[1974]. This (corrected) translation appears in Kracht & Wolter [1997]. This example
makes it clear that the problem is with the combination variable-fixedness and that par-
ticular way of translating the modal operators.

12We call this modelMsim in reference to the fact that what we are calling the Thoma-
son translation is called by others, such as Kracht & Wolter [1999] the Thomason simula-
tion.
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This result is used in conjunction with the following result in order to
give our (first) faithful embedding of E into K.

Theorem 6.2.3 (Gasquet & Herzig [1996, p.307]).

A ∈ E if and only if (A)F
′
∈K2.

Theorem 6.2.4.
A ∈ E if and only if T2((A)F

′
) ∈K.

Proof. For the ‘if’ direction suppose that A < E. Then by Theorem 6.2.3
it follows that (A)F

′
< K2. So there is a model M = 〈W,R1,R2,V 〉 and a

point x ∈ W such that M 6|=x AF
′
. By Theorem 6.2.2 it then follows that

Msim 6|=xw T2((A)F
′
). Thus, as K is complete w.r.t. the class of all Kripke

models it follows then that T2((A)F
′
) <K as desired.

The ‘only if’ direction follows by induction upon the length of deriva-
tions of A, the only case of interest coming in the inductive step where A
follows from the congruentiality of 2. But as all contexts are congruential
in K it follows that if A↔ B ∈ K then C(A)↔ C(B) ∈ K for the case where
C(p) = T2(�p)F

′
).

This gives us a translation τ where τ(�A) =

3(32⊥∧ [2(32⊥→ τ(A))∧
2((¬32⊥∧¬2⊥)→2((¬32⊥∧¬2⊥)→2(32⊥→¬τ(A))))]).

As we can see above, the context which we are using here to translate 2
is quite unwieldy, transforming formulas of modal degree n to formulas of
modal degree 6n. It would be nice if we could find a translation of a lower
degree of complexity in this sense, the search for which we will delay for
a moment to look first at what the trimodal Thomason simulation looks
like, and how it bears on the particular problem of embedding E into K.

We will consider our trimodal language as having three modal opera-
tors �0, �1 and �2. As with the bimodal Thomason translation we will
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also need a number of constants and derived modal operators. Let a3 =
3(3�⊥∧33�⊥), b3 = 3(3�⊥∧¬33�⊥) and c3 = 3�⊥∧333�⊥. Fur-
thermore let �aA = �(a3 → A), �bA = �(b3 → A) and �cA = �(c3 → A).
Then consider the following translation from the language of tri-modal
logic, to that of monomodal logic.

T3(pi) = pi

T3(A∧B) = T3(A)∧T3(B)

T3(¬A) = ¬T3(A)

T3(�0A) = �a�a�cT3(A)

T3(�1A) = �b�b�cT3(A)

T3(�2A) = �cT3(A)

We will now discuss the trimodal Thomason translation from a model
theoretic perspective. Given a model M = 〈W,R0,R1,R2,V 〉 let us con-
struct a new modelMsim3 = 〈W sim3,R,V sim3〉 where:

W sim3 = W × {0,1,2} ∪ {0,1,2}
R = {〈(x, i), (y, i)〉|Rixy} ∪ {〈(x, i), (x, j)〉|i , j}}

∪{〈(x, i), i〉|x ∈W } ∪ {〈0,1〉,〈0,2〉,〈1,2〉}.
V sim3(pi) = V (pi)× {2}.

Lemma 6.2.5. LetM = 〈W,R1,R2,R3,V 〉, and definedMsim as above. Then
for all points x ∈W we have the following.

(i)Msim |=(x,i) a3 if and only if i = 0

(ii)Msim |=(x,i) b3 if and only if i = 1

(iii)Msim |=(x,i) c3 if and only if i = 2
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Proposition 6.2.6. For all formulas A and all points x ∈ W we have the fol-
lowing:

M |=x A if and only ifMsim3 |=(x,2) T3(A).

Proof. By induction upon the complexity of A, the case of interest being
that where (i) A = �2B and (ii) where A = �0B (the case of A = �1B being
identical in detail).

For (i) suppose that M |=x �2B. Then we know that for all points
y ∈ R2(x) that M |=y B. By the inductive hypothesis it follows then that
Msim3 |=(y,2) T3(B). By Lemma 6.2.5 we know that all these points also ver-
ify c3, and additionally we can see that these are all the points in R((x,2))
which verify c3 – allowing us to conclude thatMsim3 |=(x,2) �cT3(B). Sup-
pose now that Msim3 |=(x,2) �cT3(B). Then we know that for all points
(y, i) ∈ R((x,2)) which verify c3 also verify T3(B). By the induction hypoth-
esis then we know thatM |=y B for all such points y. By Lemma 6.2.5 it
follows that i = 2 for all such points (y, i), and thus that R2xy. It follows
by the construction ofMsim3 that these are precisely the points y ∈ R2(x),
and thus thatM |=x �2B.

For (ii) suppose that M |=x �0B. Then we know that for all points
y ∈ R0(x) that M |=y B. By the inductive hypothesis it follows then that
Msim3 |=(y,2) T3(B). As the only point verifying c3 which is R-accessible
from each of the points (y,0) is the point (y,2) it follows thatMsim3 |=(y,0)

�cT3(B). AsR0xy ⇐⇒ R(x,0)(y,0) it then follows thatMsim3 |=(x,0) �a�cT3(B),
and as this is the only a3-verifying pointR-accessible to (x,2), thatMsim3 |=(x,2)

�a�a�cT3(B). Suppose now thatMsim3 |=(x,2) T3(�0B), that isMsim3 |=(x,2)

�a�a�cT3(B). Then we know that for all a3-verifying points y in R((x,2))
that Msim3 |=y �a�cT3(B). As the only such point is (x,0) it follows then
thatMsim3 |=(x,1) �a�cT3(B). So for all a3-verifying points z in R((x,0)) it
follows that Msim3 |=z �cT3(B). By the construction of Msim3 we can see
that these are the points (z,0) for points z ∈ R0(x). So, by the fact that all
of these points verify �cT3(B), it follows that for all such points (z,0) that
Msim3 |=(z,0) T3(B). By the induction hypothesis it follows thatM |=z B. As
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these points z are all the points R0-accessible from x it follows then that
M |=x �0B.

Applying this to the embedding of E into K3 ((·)F) we get a translation
where τ(�A) =

3(�[3(3�⊥∧33�⊥)→�(3(3�⊥∧33�⊥)→�((3�⊥)→ τ(A)))]∧
�[3(3�⊥∧¬33�⊥)→�(3(3�⊥∧¬33�⊥)→
�((3�⊥)→¬τ(A)))]∧3�⊥∧333�⊥).

Proposition 6.2.7. For all formulas A we have the following:

A ∈ E if and only if τ(A) ∈K.

Proof. For the ‘only if’ direction suppose A < E. Then we know that (A)F <
K3. So there is a model M = 〈W,R0,R1,R2,V 〉 and a point x ∈ W such
that M 6|=x (A)F . So by the above proposition we know that Msim3 6|=(x,0)

T3((A)F) and thus, as K is complete w.r.t the class of all Kripke models,
that T3((A)F) <K.

The ‘if’ direction follows from the fact that all contexts are congruen-
tial in K.

This translation translates modal formulas of degree n into formulas
of degree 7n. So it would appear, as one would hope, that in simplifying
the translation by identifying �1 and �2 – as we are allowed to do when
our source logic is E, but not necessarily when we are considering one of
its extensions, as noted in Gasquet & Herzig [1996] – we end up with a
translation which produces formulas of a lower complexity. What we will
now go on to look at are the prospects for further simplification in respect
of modal degree, ending up with a simpler translation which does not
require us to take detours through multi-modal logic.
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6.2.2 ‘Detours along the Road’

Before giving our simplified translation of E into K we will first give some
‘detours’ which we took in getting to our simplified translation, which
are both of independent interest, and also show some of the complexities
involved with embedding E into K. Firstly, consider the translation τ∇1

which replaces all occurrences of �A with the following.

∇1(A) = 3(3�A∧3�¬A).

What we will now show is that this translation faithfully embeds the
modal logic E+e�p↔�¬p into K. It is worth noting that we could equally
well have axiomatized this logic as E+e�p→ �¬p or E+e�¬p→ �p – as
these three formulas are all inter-deducible in E by simple applications
of the rule of replacement of equivalents. These second two formulas are
commonly used in axiomatizations of modal logics of non-contingency –
reflecting the fact that if it is contingent whether p is true, it is also con-
tingent whether p is false.13

Lemma 6.2.8. For all formulas A if A ∈ E +e�p↔�¬p then τ∇1
(A) ∈K.

Proof. By induction upon the length of derivations of A.14 For the basis
case A is an axiom, the only case of interest being that where A is �p ↔
�¬p. The τ∇1

-translation of this can be shown to be E-provable (and hence
K-provable) as follows.

13For more information on contingency and non-contingency logics see Humberstone
[1995] and Kuhn [1995].

14Here we are thinking of the axiomatization of E+e�p↔�¬p as being the one we get
by adding the rule of RE as a new rule, and �A↔ �¬A as a new axiom schemata to a
standard axiomatization of classical propositional logic with modus ponens as its only
rule.
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(1) 3(3�p∧3�¬p)↔3(3�p∧3�¬p) T F.

(2) (3�p∧3�¬p)↔ (3�¬p∧3�p) T F.

(3) 3(3�p∧3�¬p)↔3(3�¬p∧3�p) (2),3−RE

(4) 3(3�p∧3�¬p)↔3(3�¬p∧3�p) (1), (3)T F.

For the inductive step suppose that we can derive A by applying some
rule of inference to some formulas Bi (i < n). The case of modus ponens
is trivial – leaving us only with the case where the rule in question is RE.
Suppose then that B↔ C ∈ E +�p↔�¬p and that A = �B↔�C. By the
induction hypothesis we know that τ∇1

(B↔ C) ∈ K – which as we have a
modal translation means that τ∇1

(B)↔ τ∇1
(C) ∈ K, and thus by (RE) and

the commutativity of ∧ it follows that τ∇1
(�B↔�C) ∈K.

Definition 6.2.9. Given a neighbourhood model N = 〈W,N,V 〉 construct
a Kripke modelMEN = 〈WEN ,REN ,V 〉 as follows.

• WEN :=W ∪ {ax,X ,〈x,X〉,〈x,−X〉|X ∈N (x)}.

• REN := {〈x,ax,X〉|X ∈N (x)}
∪{〈ax,X ,〈x,X〉〉,〈ax,X ,〈x,−X〉〉|X ∈N (x)}
∪{〈〈x,X〉, y〉|y ∈ X}
∪{〈〈x,−X〉, y〉|y ∈W rX}.

The above model construction is quite similar to the one used in Defini-
tion 6.1.9 except that we have added the extra points ax,X (for each neigh-
bourhood X ∈N (x)) which are REN -related to one point which accesses all
points in X and another point which accesses all points in the complement
of X.

Proposition 6.2.10. E+�p↔�¬p is determined by the class of all neighbour-
hood frames whose neighbourhood sets are closed under complements. That is
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to say, the class of all neighbourhood frames 〈W,N 〉 such that if X ∈N (x) then
W rX ∈N (x).

Proposition 6.2.11. Let N = 〈W,N,V 〉 be a neighbourhood model which is
closed under complements. Then for all all formulas A and points x ∈ W we
have the following:

N |=x A if and only ifMEN |=x τ∇1
(A).

Proof. By induction upon the complexity of A – the only case of interest
being that in the inductive step where A = �B for some formula B.

For the ‘if’ direction suppose that N |=x �B. Then we know that X ∈
N (x) where X = ||B||. By the inductive hypothesis we can thus reason that
– for all points y ∈ X – MEN |=y τ∇1

(B). As X = REN (〈x,X〉) we know
then that MEN |=〈x,X〉 �τ∇1

(B). As these points are all of the points in N
which verify B we thus know that for all points z ∈W r ||B|| thatN |=x ¬B.
Thus by the inductive hypothesis we can reason that – for all such points
z ∈ W rX – thatMEN |=z ¬τ∇1

(B). As REN (〈x,−X〉) = W rX we can con-
clude that MEN |=〈x,−X〉 �¬τ∇1

(B). As REN (ax,X) = {〈x,X〉,〈x,−X〉} we can
see thatMEN |=ax,X 3�τ∇1

(B)∧3�¬τ∇1
(B), and consequently thatMEN |=x

3(3�τ∇1
(B)∧3�¬τ∇1

(B)) as desired.
For the ‘only if’ direction suppose thatM |=x 3(3�τ∇1

(B)∧3�¬τ∇1
(B)).

Then we know that there is a point ax,X ∈ REN (x) such that MEN |=ax,X
3�τ∇1

(B) ∧ 3�¬τ∇1
(B). This means that either MEN |=〈x,X〉 �τ∇1

(B) or
MEN |=〈x,X〉 �¬τ∇1

(B). By the inductive Hypothesis this means that ei-
ther ||B|| ∈ N (x) or ||¬B|| ∈ N (x), from which it follows that N |=x �B or
N |=x �¬B. In the second case we can simply appeal to the appropri-
ate substitution instance of �p ↔ �¬p to conclude that N |=x �B as de-
sired.

Theorem 6.2.12. For all formulas A we have the following.

A ∈ E +�p↔�¬p if and only if τ∇1
(A) ∈K.
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Proof. The ‘only if’ direction follows via appeal to Lemma 6.2.8. For the
‘if’ direction suppose that A < E +�p↔ �¬p. Then by Proposition 6.2.10
there is a neighbourhood modelN = 〈W,N,V 〉which is closed under com-
plements, and a point x ∈ W such that N 6|=x A. By Proposition 6.2.11 it
follows thatMEN 6|=x τ∇1

(A), and as this is a model on a frame for K that
τ∇1

(A) <K.

The second translation we will consider is the one which replaces all
occurrences of �A with >�A = �>→�τ >�(A). This translation can be quite
easily shown to faithfully embed EN into E.

Lemma 6.2.13. For all formulas A if A ∈ EN then τ >�(A) ∈ E.

Proof. By induction upon the length of derivations of A.15 For the basis
case A is an axiom, the only case of interest being that where A is �>. In
this case we have that τ >�(�>) = �>→�> – which is provable in E.

For the inductive step suppose that we get A by applying some rule of
inference to some formulas Bi . The case of modus ponens is trivial – leav-
ing us only with the case where the rule in question is (RE). Suppose then
that B↔ C ∈ EN and that A = �B↔ �C. By the induction hypothesis we
know that τ >�(B↔ C) ∈ E – which as we have a modal-to-modal translation
means that τ >�(B)↔ τ >�(C) ∈ E.

(1) τ >�(B)↔ τ >�(C) IH

(2) �τ >�(B)↔�τ >�(C) (1), (RE)

(3) (�>→�τ >�(C))↔ (�>→�τ >�(B)) (2),T F

Thus we have τ >�(�C↔�B) ∈ E and the result follows.

15Again we take as understood the axiomatization with RE as our only modal rule, and
�> as our only modal axiom – the non-modal basis being one with modus ponens as the
sole rule.
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Theorem 6.2.14 (Chellas [1980]). EN is determined by the class of all neigh-
bourhood frames whose neighbourhood sets contains the unit. That is to say,
the class of all neighbourhood frames 〈W,N 〉 for whichW ∈N (x) for all x ∈W .

Proposition 6.2.15. Let N = 〈W,N,V 〉 be a neighbourhood frame whose
neighbourhood function contains the unit. Then for all formulas A and all
points x ∈W we have the following.

N |=x A if and only ifN |=x τ >�(A).

Proof. By induction upon the complexity of A – the only case of interest
being that in the inductive step where A = �B for some formula B.

For the ‘only if’ direction suppose that N |=x �B. Then we know that
||B|| ∈ N (x). By the inductive hypothesis this means that ||τ >�(B)|| ∈ N (x),
and thus thatN |=x �τ >�(B). Thus it follows thatN |=x �>→�τ >�(B).

For the ‘if’ direction suppose that N |=x �> → �τ >�(B). As N (x) con-
tains the unit we know that ||>|| ∈N (x) – and thus thatN |=x �>. It follows
that N |=x �τ >�(B). So we know that ||τ >�(B)|| ∈ N (x). By the inductive hy-
pothesis it follows then that ||B|| ∈N (x) and consequently thatN |=x �B as
desired.

Theorem 6.2.16. For all formulas A we have the following.

A ∈ EN if and only if τ >�(A) ∈ E.

Proof. The ‘only if’ direction is given by Lemma 6.2.13. For the ‘if’ direc-
tion suppose that A < EN. Then by Theorem 6.2.14 there is a neighbour-
hood model N = 〈W,N,V 〉 which contains the unit, and a point x ∈ W
such that N 6|=x A. By Proposition 6.2.15 it follows then that N 6|=x τ >�(A)
and that, as this is a neighbourhood model, that τ >�(A) < E.

This translation, called (·)∗ in Segerberg [1971a, p.212], is there used to
show that for all formulas A and B that:

A ∈K + {3>→ B} if and only if τ >�(A) ∈ EMCD + {�>→ τ >�(B)}.
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We can improve upon this result, which is one half of Lemma 3.4 in Segerberg
[1971a, p.215], using the logical machinery introduced above. What we
will now show is that we can faithfully embed EMN into EM and EMNC
(aka. K) into EMC. First we will need the following results from Chel-
las [1980]. Let us say that a neighbourhood set N (x) in a neighbourhood
frame 〈W,N 〉 is closed under intersections if it fulfils the following condi-
tion for all points x ∈W .

(c) if X ∈N (x) and Y ∈N (x) then X ∩Y ∈N (x).

Theorem 6.2.17 (Chellas [1980] Theorem 9.12). EMC is determined by the
class of all supplemented neighbourhood frames whose neighbourhood sets are
closed under intersections.

Theorem 6.2.18 (Chellas [1980] Theorem 9.14). K is determined by the
class of all neighbourhood frames whose neighbourhood sets are supplemented,
closed under intersections and contain the unit.

Theorem 6.2.19. For all formulas A we have the following:

A ∈ EMN if and only if τ >�(A) ∈ EM.

Proof. The ‘only if’ direction follows from Lemma 6.2.13, with the cases
of M in the basis case being handled by the following proof of τ >�(M).

(1) �(A∧B)→ (�A∧�B) M

(2) �>→�(A∧B)→�>→ (�A∧�B) (1),T F

(3) (�>→ (�A∧�B))→ ((�>→�A)∧ (�>→�B)) T F

(4) �>→�(A∧B)→ ((�>→�A)∧ (�>→�B)) (2), (3)T F

For the ‘if’ direction suppose that A < K. Then we know that there is a
neighbourhood model N which is supplemented and contains the unit,
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and a point x ∈W such thatN 6|=x A. By Proposition 6.2.15 it follows then
that N 6|=x τ >�(A). As this is a neighbourhood model is supplemented it
follows that τ >�(A) < EM.

Theorem 6.2.20. For all formulas A we have the following:

A ∈K if and only if τ >�(A) ∈ ECM.

Proof. The ‘only if’ direction follows from Lemma 6.2.13, with the case of
M in the inductive step being handled as in Theorem 6.2.19 and the case
of C being handled by the following proof of τ >�(C) in EC.

(1) (�A∧�B)→�(A∧B) C

(2) (�>→ (�A∧�B)→ (�>→�(A∧B)) (1),T F

(3) (�>→ (�A∧�B))↔ ((�>→�A∧�>→�B)) T F

(4) ((�>→�A)∧ (�>→�B))→ (�>→�(A∧B)) (2), (3)T F.

For the ‘if’ direction suppose that A < K. Then by Theorem 6.2.18
we know that there is a supplemented neighbourhood model N which is
closed under intersections and contains the unit, and a point x ∈W such
thatN 6|=x A. By Proposition 6.2.15 it follows then thatN 6|=x τ >�(A). As this
is a neighbourhood model is supplemented and closed under intersections
it follows from Theorem 6.2.17 then that τ >�(A) < ECM.

In fact, we are able to provide a general result from which the above
two results follow.

Theorem 6.2.21. Suppose that S is a congruential modal logic such that S( >�

) ⊇ S. Then S( >�) = S+e N.

Proof. That S( >�) ⊇ S +e N is obvious. To see that S( >�) ⊆ S +e N first note
that A ↔ τ >�(A) ∈ S +e N. So if A ∈ S( >� ) then τ >�(A) ∈ S. Consequently
τ >�(A) ∈ S+e N and so, finally, A ∈ S+e N.
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6.3 A Simple Embedding of E in monomodal K

As we saw in §6.2.1 the translational embeddings of E into monomodal K
which we can see in the literature all suffer from the translated formulas
having a large modal degree – the modal degree of τ(A) being 6 times the
modal degree of A where τ(A) = T2((A)F

′
), and 7 times the modal degree

of A where τ(A) = T3((A)F). What we will now give is our simplified em-
bedding – simplified both in the sense of being direct, not taking a detour
through multi-modal logic, and also in the sense that the modal degree of
translated formulas is smaller than those given in the literature surveyed
in §6.2.1.16

Let τ�′ be the modal translation which uniformly replaces all occur-
rences of �B with �′τ�′ (B), where �′ is defined as follows.17

�′A =Def 3(3(�A∧��3>)∧3(3�¬A∧33�⊥))

Like every context, the context C(p) = �′p is congruential in K, allowing
us to conclude the following.

Lemma 6.3.1. For all formulas A if A ∈ E then τ�′ (A) ∈K.

All that remains to be shown then is that this translation is faithful –
which we will undertake to show model-theoretically.

Given a neighbourhood model N = 〈W,N,V 〉, a point x ∈ W and a
neighbourhood X ∈ N (x) let 〈x,X, i〉 (0 ≤ i ≤ 5) be new points not belong-
ing to W , which we will write as 〈x,X〉∗, 〈x,X〉+, (x,X〉−, 〈x,X〉I ,〈x,X〉Ie1,
〈x,X〉Ie2. Here we are thinking of the labels 〈x,X〉+ and 〈x,X〉− as denot-
ing the neighbourhood 〈x,X〉 and its complement respectively. The super-
script I should be read as ‘intermediary’, and the subscripted e in e1 and

16This material has appeared as French [2009]
17The first conjunct of the conjunction in the scope of the main ’3’ here could more

simply be written as 3�(A∧�3>), but the formulation above has the advantage of dis-
playing the second conjuncts of the two inner conjunctions as being each other’s nega-
tions.
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e2 as ‘dead-end’. Our reason for the choice of these names should become
clear in what follows. Let K〈x,X〉 and R〈x,X〉 be defined as follows.

K〈x,X〉 = {〈x,X〉∗,〈x,X〉+,〈x,X〉i , (x,X〉Ie1,〈x,X〉
I
e2,〈x,X〉

−}.
R〈x,X〉 = {〈〈x,X〉∗,〈x,X〉+〉,〈(x,X〉∗,〈x,X〉I〉,〈〈x,X〉I ,〈x,X〉−〉,

〈〈x,X〉I ,〈x,X〉Ie1〉,〈(x,X〉
I
e1,〈x,X〉

I
e2〉}.

Definition 6.3.2. Given a neighbourhood model N = 〈W,N,V 〉 construct
the Kripke modelNEK = 〈WEK ,REK ,VEK〉 as follows.

• WEK :=W ∪ (
⋃
x∈W {K〈x,X〉|X ∈N (x)}).

• REK := (
⋃
x∈W {R〈x,X〉|X ∈N (x)})∪ {〈x,〈x,X〉∗〉|X ∈N (x)}∪

{〈〈x,X〉+, y〉|y ∈ X} ∪ {〈〈x,X〉−, y〉|y ∈ (W rX〉}.

• VEK := V .

Figure 6.1: A snapshot ofNEK for a neighbourhood X ∈N (x).

The debt to the model constructions given in Brown [1988] and Gas-
quet & Herzig [1996] should be fairly clear here. To get a better idea of
what this model construction does it is worthwhile looking at Figure 1,
which illustrates what happens to a point x ∈ W which has X as one of
its neighbourhoods. The model construction creates a structure like that
in Figure 1 for each neighbourhood X in N (x) for all points x ∈ W – the
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points 〈x,X〉∗ acting as ‘overseers’ allowing us to check whether some for-
mula B is true throughout some neighbourhood X and false throughout
its complement W rX.

One might wonder about the purpose of the ‘dead end’ points in the
above model construction. What we will now show is that these dead end
points, along with the pure formulas in the definition of �′A, allow us
to force the two conjunctions within the scope of the outermost diamond
to be true at specific points in the model (〈x,X〉+ and 〈x,X〉I respectively)
whenever �′A is true at 〈x,X〉∗.

Lemma 6.3.3. For all formulas A and all x ∈ W and X ∈ N (x) we have the
following.

NEK |=〈x,X〉∗ 3(3�¬A∧33�⊥)⇔NEK |=〈x,X〉I 3�¬A∧33�⊥

Proof. For the ‘⇒’ direction suppose that NEK |=〈x,X〉∗ 3(3�¬A∧33�⊥),
and suppose for a reductio that NEK 6|=〈x,X〉I 3�¬A∧33�⊥. As the only
other point REK-accessible to 〈x,X〉∗ is 〈x,X〉+ this means that NEK |=〈x,X〉+
3�¬A∧33�⊥. In particular it follows that that NEK |=〈x,X〉+ 33�⊥. So
there is a point y ∈ REK (〈x,X〉+) such that NEK |=y 3�⊥. So for some z
such that REKyz, NEK |=z �⊥. But this is impossible, since the only z for
which REKyz is 〈y,Y 〉∗, and 〈y,Y 〉∗ is not a point lacking REK-successors
(in fact, having precisely two, namely 〈y,Y 〉+ and 〈y,Y 〉I ). So by reductio
it follows thatNEK |=〈x,X〉I 3�¬A∧33�⊥.

The ‘⇐’ direction follows trivially by the definition of truth and the
construction ofNEK .

Lemma 6.3.4. For all formulas A and all x ∈ W and X ∈ N (x) we have the
following.

NEK |=〈x,X〉∗ 3(�A∧��3>)⇔NEK |=〈x,X〉+ �A∧��3>.

Proof. For the ‘⇒’ direction suppose thatNEK |=〈x,X〉∗ 3(�A∧��3>), and
suppose for a reductio that NEK 6|=〈x,X〉+ �A ∧��3>. Then, as the only
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other point REK-accessible to 〈x,X〉∗ is 〈x,X〉I we know that NEK |=〈x,X〉I
�A ∧ ��3>. In particular this means that NEK |=〈x,X〉I ��3>. Thus
NEK |=〈x,X〉Ie1 �3> and NEK |=〈x,X〉Ie2 3>, which cannot happen. Thus it
follows thatNEK |=〈x,X〉+ �A∧��3> as desired.

The ‘⇐’ direction follows trivially by the definition of truth and the
construction ofNEK .

Lemma 6.3.5. For all points x ∈W and X ∈N (x) we have the following.

NEK |=〈x,X〉+ ��3>.

Proof. Suppose for a reductio thatNEK 6|=〈x,X〉+ ��3>. Then there must be
a point y ∈ REK (〈x,X〉+) and a point z ∈ REK (y) such that NEK 6|=z 3>. It is
easy to see that such a point zmust be of the form 〈y,Y 〉∗ for some Y ∈N (y)
and that such a point has exactly 2 REK-successors – namely 〈y,Y 〉+ and
〈y,Y 〉I – and thusNEK |=z 3>, giving us a contradiction. Thus by reductio
it follows thatNEK |=〈x,X〉+ ��3> as desired.

Theorem 6.3.6. LetN = 〈W,N,V 〉 andNEK = 〈WEK ,REK ,VEK〉 be the model
given by Definition 6.3.2. Then, for all formulas A and all points x ∈ W we
have the following.

N |=x A if and only ifNEK |=x τ�′ (A).

Proof. By induction upon the complexity of A, the only case of interest
being that in the inductive step where A = �B for some formula B.

For the ‘only if’ direction suppose that N |=x �B. Then for X = ||B||,
we have that X ∈ N (x). By the inductive hypothesis it follows that for
all points y ∈ X that NEK |=y τ�′ (B). By the definition of REK it follows
that NEK |=〈x,X〉+ �τ�′ (B) and by Lemma 6.3.5 NEK |=〈x,X〉+ ��3>, and
consequently thatNEK |=〈x,X〉∗ 3(�τ�′ (B)∧��3>). As the points y ∈ X are
the only points inN where B is true we know that all the points z ∈W rX
are such that N 6|=z B and so by the inductive hypothesis we know that,
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for all such points z NEK 6|=z τ�′ (B) – and hence that NEK |=z ¬τ�′ (B). By
the definition of REK it follows that NEK |=〈x,X〉− �¬τ�′ (B), and thus that
NEK |=〈x,X〉I 3�¬τ�′ (B)∧33�⊥. Consequently we can see thatNEK |=〈x,X〉∗
3(3�¬τ�′ (B)∧33�⊥) and thus thatNEK |=x τ�′ (�B).

For the ‘if’ direction suppose that NEK |=x 3(3(�τ�′ (B) ∧ ��3>) ∧
3(3�¬τ�′ (B) ∧ 33�⊥)). Then by the definition of truth we have that
there exists a point y ∈ REK (x) such that NEK |=y 3(�τ�′ (B) ∧��3>) ∧
3(3�¬τ�′ (B) ∧ 33�⊥). From the construction of NEK we know that
such a y will be 〈x,X〉∗ for some X ∈ N (x). By Proposition 6.3.4 it fol-
lows that NEK |=〈x,X〉+ �τ�′ (B)∧��3>. Thus for all points y ∈ X we have
NEK |=y τ�′ (B). By the inductive hypothesis N |=y B for all such points y.
By Proposition 6.3.3 it follows that NEK |=〈x,X〉I 3�¬τ�′ (B)∧33�⊥, and
thus thatNEK |=〈x,X〉− �¬τ�′ (B). Thus for all points z ∈W rX we have that
NEK 6|=z τ�′ (B). By the inductive hypothesis N 6|=z B for all such points z,
from which it follows that X = ||B|| and thus thatN |=x �B as desired.

Theorem 6.3.7. For all formulas A we have the following.

A ∈ E if and only if τ�′ (A) ∈K.

Proof. The ‘only if’ direction is Lemma 6.3.1. For the ‘if’ direction suppose
that A < E. Then there is a neighbourhood model N = 〈W,N,V 〉 and a
point x ∈ W such that N 6|=x A. By Theorem 6.3.6 it follows that NEK 6|=x
τ�′ (A) and thus, as this is a model on a Kripke frame, that τ�′ (A) < K as
desired.

So we have shown that our translation τ�′ faithfully embeds E into
monomodal K. Furthermore, as promised, our translation is simpler than
those which we surveyed above in section §6.2.2 – the τ�′-translation of a
formula of modal degree n having a modal degree of 5n, as compared to
the 6n and 7n we get from the Thomason-derived translations.

All of the translations of E into monomodal K also allow us to bring
out an interesting feature of unary contexts in K. One might have thought
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that unary contexts in K are in some sense special – sharing some prop-
erty which does not follow from them all being congruential. What these
embedding results show, though, is that there is nothing special in this
sense about unary contexts in K – contexts like �′p having all and only
the properties of contexts that follow from their being congruential, just
like the context �p in E.



VII

Conclusion

In closing there are a few remarks worth making, both concerning what we
have shown and some avenues for further work. What we have done here
is give wide ranging and systematic study of modal-to-modal translations
between monomodal logics. The focus on modal-to-modal translations
was motivated from a formal perspective by the fact that modal-to-modal
translations are very simple and elegant translations to work with which
still allow us to cast some light on the workings of definitional translations
in general. From a philosophical perspective, modal logics are still one of
the best formal tools we have for investigating various live philosophical
problems in analytic philosophy, and so the translations between them
can provide useful formal tools for discussing the relationships between
the concepts our logics are intended to characterize.

For example it can be shown that tense logic with presentist quanti-
fiers is translationally equivalent to tense logic with eternalist quantifiers
– and so these two logics are ‘really the same logic’ by the argument given
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in §5.3.1 If we really think that our logic represents our metaphysics accu-
rately in all the relevant respects to the dispute between presentism and
eternalism then we might be moved to think that their dispute is nothing
but a merely verbal one. Sider [2006] argues that this dispute is a non-
verbal one by giving what he thinks is a respect in which our logics here
do not accurately represent our metaphysics. Regardless of the validity or
soundness of Sider’s argument, what is clear here is the classificatory role
which translations (and in this case translational equivalence) are playing
here. Similarly, we can see the notions outlined in the preceding chapters
being used implicitly (or in the case of translational equivalence, explic-
itly) in the arguments given in Lenzen [1979] for us regarding the normal
modal logic S4.4 as the correct epistemic logic, and KD45 as the correct
doxastic logic. The moral to be drawn here, I think, is that whenever we
think we can formalize our philosophy in terms of modal logics in particu-
lar, but also in terms of logics generally, we should properly attend to how
the presence of translations between the logics we are considering bears
on our philosophical judgments.

Along the way we also left a variety of problems open, which we will
now reiterate and comment on.

Range of Translations: We have left open a number of open problems
regarding the range of translations, both very specific and very general.
The main questions of interest concern the maximality of logics within
the range of a translation. Throughout Chapter 4 we have a number of
results which show that all of the logics fulfilling a given condition are
sublogics of one of a number of maximal logics if they are in the range at
all. For example, Theorem 4.2.30 shows that all Kripke-complete modal

1Presentist and Eternalist quantifiers are the obvious tense logical analogues of the
actualist and possibilist quantifiers in Forbes [1989] – where we translate the actualist
quantifier ∃xϕ as the obvious range restriction of the possibilist quantifier (i.e. Σxϕ ∧
E(x)), and the possibilist quantifier Σxϕ in terms of the actualist quantifier and the scope
shifting vlach operators ↑ and ↓ as ↑3∃x ↓ ϕ.
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logics extending KD4.2 which are in NRan(τ3�,KD45) are sublogics of
either KD45 or S4.4.

The canonical example of this kind of problem, though, is the KT-
embedding problem, outlined in Chapter 4.3 and also addressed in French
& Humberstone [2009]. The KT-embedding problem is that of settling
Conjecture 4.3.4, that all normal modal logics which KT can be faithfully
embedded into by the τ�-translation all lie between K and KT. We would
like to know, once and for all, whether this conjecture is true.

In a more general setting, we would like to know whether there are any
other general results like Theorem 3.2.1 regarding maximality of logics in
the range of a translation, and whether a set of maximal logics constitutes
all of the maximal logics in the range – i.e. whether a given set of maximal
logics in NRan(τ,S) constitute max(NRan(τ,S).

Intertranslatability and Translational Equivalence: There are two sub-
stantive problems concerning translational equivalence which we have
left open in the text. The first of these, Open Problem 5.2.19, is whether
there is a pair of normal monomodal logics which are intertranslatable
but not translationally equivalent. In particular we’d like that these two
logics share the same set of equivalence formulas, so that they are actually
candidates for being translationally equivalent, rather than failing to be
translationally equivalent by default. The second of these problems is not
highlighted in the text overly much, but it relates to equivalence between
logics. We would like to have a pair of consequence relations which are
equipollent, but not definitionally equivalent – showing that equipollence
is strictly weaker than definitional equivalence – or alternatively, prove
that there can be no such pair of consequence relations, thus showing that
equipollence and definitional equivalence are really just the same notion.

Open Problem 7.0.8. Is there a pair of consequence relations `1 and `2
such that `1 and `2 are equipollent, but not definitionally equivalent?

As mentioned on page 98, it would be nice to know whether Theorem
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5.0.15 can be weakened to hold for logics which are merely intertranslat-
able.

We also have left open another interesting formal problem, Problem
5.1.13, of whether the logic KDAltn can be faithfully embedded into the
logic KTAltn+1 for n > 1 – the n = 1 case being shown in Chapter 5.1.

We have remained largely silent, except for a brief excursus in §6.2, on
issues arising when we consider multi-modal logics – a good example of
translations of this kind appearing in Kuhn [2004]. Given that a large
amount of our philosophical theorizing usually involves considering clus-
ters of interrelated concepts and the relationships between them (as in the
example given in §2.1.1.1) translations between multi-modal logics, and
the relationships such translations bear to the related monomodal logics,
are well worth investigating. We will leave aside this research for another
time.
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