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Abstract

We investigate twodifferent broad traditions in the abstract valuationalmodel
theory for nontransitive and nonreflexive logics. �e first of these traditions
makes heavy use of the natural Galois connection between sets of (many-valued)
valuations and sets of arguments. �e other, originating with work by Grzegorz
Malinowski on nonreflexive logics, and best systematized in Blasio et al. [2017],
lets sets of arguments determine a more restricted set of valuations. After giving
a systematic discussion of these two different traditions in the valuational model
theory for substructural logics, we turn to looking at the ways in which we might
try to compare two sets of valuations determining the same set of arguments.

1 Introduction

What is the space of possibilities for giving valuationalmodel theory for substructural
logics? In previous work we’ve explored one way of generalizing a common approach
to the valuational model theory for fully structural logics, championed in [Scott, 1974;
Shoesmith and Smiley, 1978] ([Humberstone, 2012, pp.57–59] contains a detailed in-
troductory presentation of this perspective), which emphasizes the role of a Galois
connection between consequence relations and sets of bivaluations. In this previous
work, we’ve shownhow to extend theseGalois connections to logics that need not obey
reflexivity or transitivity, by moving from two values to three and four. Call this the
Galois tradition. �is is not the only systematic way of giving a valuational model the-
ory for substructural logics, though. �ere is another tradition, coming from works
beginning with [Malinowski, 1990], and drawn on in [Blasio et al., 2017; Frankowski,
2004], which has played a central role in the development of the abstract model the-
ory of nonreflexive and nontransitive logics. Call this other way of associating sets of
valuations with sets of arguments theMalinowski tradition. In this paper we present a
systematic and unifying treatment of this tradition, the resulting uniform treatment
being broadly similar to the valuational treatment of such logics in [Blasio et al., 2017].
Ourmain goal here is to attempt to situate these two traditions relative to one another.
To this end we investigate a variety of different ways of comparing sets of valuations.
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�eroad-map for thepresentpaper is as follows. Webegin in section2by introduc-
ing the common aspects of the abstract valuational approach to logical consequence
against whose background our investigation of the two traditions are defined. We
then, in section 3 and section 4, introduce the two different traditions, before in sec-
tion 5 looking at the various ways in which we might compare sets of valuations. An
appendix then investigates the question of when a given set of arguments in the Set-
Set framework has a least class of valuations determining it, complementing similar
results concerning arguments in the Set-Fmla framework given in section 5.

2 Abstract Valuational Approaches to Logical Conse-

quence

Abstract valuational approaches to logical consequence of the kind which we will be
concerned with here involve the interplay between three components: some setV of
valuations, some setA of arguments, and a binary counterexample relation ⨳ fromV to
A. �roughout we will regardV andA as determined by some language , which we
will take to simply be a set, the members of which we refer to as formulas.1 Note in
particular that we are ignoring any structure the formulas themselves might exhibit,
treating each formula alike simply as a member of.

�e way in which our language, , determines our set of arguments,A, depends
on which logical framework, or simply framework, we are working in. (We take the term
from [Humberstone, 2012, pp.103–112].) �ere are two frameworks which are of pri-
mary interest in the present paper, each of which provides a different account of what
an argument is, and thus of what the setA looks like.

• According to the framework Set-Fmla an argument consists of a pair ⟨Γ, �⟩ of
a set of formulas and a single formula, which we will write as [Γ ⊳ �]. In the
framework Set-Fmla the set of all arguments isAsf = ℘() × .

• According to the framework Set-Set an argument consists of a pair ⟨Γ,Δ⟩ of
sets of formulas, which we will write as [Γ � Δ]. In the framework Set-Set the
set of all arguments isAss = ℘() ×℘().

In the present paper we stick almost entirely to the framework Set-Fmla, but we
will have occasional reason to consider how matters fare in Set-Set as well. When
we do not explicitly remark on framework below, we are speaking in Set-Fmla. It is
sometimes useful to think of arguments as ordered by the partial order⊑:

Definition 1. For Set-Fmla arguments, [Γ ⊳ �] ⊑ [Γ′ ⊳  ] iff Γ ⊆ Γ′ and� =  ; and
for Set-Set arguments, [Γ � Δ] ⊑ [Γ′ � Δ′] iff Γ ⊆ Γ′ andΔ ⊆ Δ′.

Consequence relations can be thought of as sets of arguments. Often, however, the
phrase ‘consequence relation’ is understood to impose certain conditions on such a set;
not every set is meant to count. (For example in [Humberstone, 2012, p. 55].) To avoid

1�roughout we will use �,  and other lowercase Greek letters as schematic letters for formulas, and
Γ,Δ,Σ and other uppercase Greek letters for sets of formulas.
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Figure 1: Two orders on values

even suggesting suchassumptions,we frameourdiscussion entirely in termsof sets of
arguments, andwemake anyneeded restrictions explicit aswego. Weexpect, though,
that natural applications of our results will be to sets of arguments understood as the
set of valid arguments of some logical system or other, and this connection inspires
some of our terminology.

In particular, we consider the following three conditions on sets of arguments.
(Here we state them in their Set-Fmla forms, since that is our present focus. See
[French and Ripley, 201X] for the appropriate Set-Set versions.)

Definition 2. A setA of Set-Fmla arguments is:

• reflexive iff for each � ∈ , [� ⊳ �] ∈ A;

• monotonic iff whenever a ∈ A and a ⊑ b, then b ∈ A;

• completely transitive iff for allΣ ⊆ , if [Γ⊳�] ∈ A for each� ∈ Σ and [Σ,Γ⊳�] ∈
A, then [Γ ⊳ �] ∈ A.

�is paper focuses on connections between sets of arguments on the one hand and
sets of valuations on the other. Following [French and Ripley, 201X] (and implicitly
[Humberstone, 1988]), we work with tetravaluations: members of V, the set of func-
tions from the language into the set {⊤,⊥, ⊥⊤, ∗} of values. We consider {⊤,⊥, ⊥⊤, ∗} as
a bilattice, equipped with two distinct lattice orders⊑ and≼, as depicted in fig. 1, and
lift each order to V itself pointwise. We refer to the order ⊑ as the information order,
and to the order≼ as the truth order.

In this setting, we can present in a particularly abstract way the usual process of
determining a set of arguments by specifying a set of models, a way that allows us to
abstract away frommany of the details often associated with models. �is usual pro-
cess depends on having some sense of what it takes for a model to be a counterexam-
ple to an argument, and then counts an argument as valid iff it has no countermodels.
Here, we define our counterexample relation as in definition 3.

3



Definition 3. A valuation v is a counterexample to an argument a = [Γ⊳�] (in the Set-
Set framework a = [Γ �Δ])—written v ⨳ a—iff v[Γ] ⊆ {⊤,⊥⊤} and v(�) ∈ {⊥,⊥⊤} (in
the Set-Set framework v[Δ] ⊆ {⊥,⊥⊤}).

In effect, our four values simply encode every possible combination of coun-
terexampley behaviour: ⊤ is a premise-counterexample value; ⊥ is a conclusion-
counterexample value; ⊥⊤ is both of these; and ∗ is neither. With this understanding
of counterexampling inmind, any set V ⊆ V uniquely determines a set of arguments
(V ) ⊆ A, namely the set of all arguments which have no counterexamples in V .

Already, this gives us some texture to work with. (For proofs of the following
claims, see [French and Ripley, 201X].) First, (V ) is always monotonic, for any set
V of valuations. Second,(V ) is reflexive if and only if there is no v ∈ V and � ∈ 
withv(�) = ⊥⊤. And third,(V ) is completely transitive if there is nov ∈ V and� ∈ 
with v(�) = ∗.2

3 �eGalois Tradition

�e connection just described between sets of valuations andmonotonic sets of argu-
ments is a strong one—keeping fixed our notion of counterexample, a given set of val-
uations determines a single monotonic set of arguments. But which monotonic sets
of arguments can be determined in this way? As it happens, all of them.

To see this, it is useful to define amap going in the other direction; just as we have
 to take us from sets of valuations to sets of arguments, we want a map to take us
from sets of arguments to sets of valuations. �is cannot be an inverse of, since
is not injective; indeed, every set of arguments is determined by multiple distinct sets
of valuations.3 So we are left with some choices. It is here that the two traditions we
are considering differ from each other.

In the case of theGalois traditionweassociatewith agiven set of argumentsA ⊆ A
the set of valuations(A) = {v ∈ V|∀a ∈ A,¬(v⨳a)}—the set of all valuationswhich
are not counterexamples to any argument in A. (�is definition would make just as
much sense in a Set-Set framework, and indeed the Galois tradition often involves
study of both frameworks simultaneously, including the relations between them. See
for example [Shoesmith and Smiley, 1978].)

Together with the above definition of  (the set of arguments consistent with a
given set of valuations) this instantiates a general and familiar structure: that of a Ga-

2 Note that this third claim, unlike the second, is not a biconditional. As occasion arises we will refer
to the classes of valuations implicitly delimited here asVr

3 (for those which never assign the value ⊥⊤), V
t
3

(for those which never assign the value ∗). In the interests of completeness, the class of all valuations which
never assign a formula either of ∗ or⊥⊤will be referred to asV2.

3Since the valuation v⊤ that assigns ⊤ to every formula is a counterexample to no Set-Fmla argument,
it can always be added to or removed from a set of valuations without affecting the resulting consequence
relation. �e same goes for any valuation that assigns only values from {⊤, ∗}.
One particularly well-known case of this involves the Set-Fmla consequence relation of classical propo-

sitional logic. �is set of arguments is determined by the usual set of all two-valued Boolean valuations
(using the value ⊤ for truth and ⊥ for falsity); but the same consequence relation is also determined by the
set of valuations that adds v⊤—which is not Boolean—to this usual set. It is cases like this which are used in
[Carnap, 1943] to motivate a shift to what is essentially the Set-Set framework. For further discussion and
references on this and related issues, see [Humberstone, 2012, p.101ff].
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lois connection. For anyA ⊆ A, V ⊆ V, we haveA ⊆ (V ) iff V ⊆ (A); this is what
it means for, to form a Galois connection.

Galois connections are the simplification to the case of posets of the categorical no-
tion of adjunction.4 Adjunctions in general, and Galois connections in particular, crop
up all over the place in mathematics, and a great deal is known about their behaviour.
One of the key features of the Galois tradition is that it allows us to appeal directly to
this body of work.

�eorem 1 (Galois facts). For anyV , V ′ ⊆ V andA,A′ ⊆ A,

(i) ifV ⊆ V ′, then(V ) ⊇ (V ′),

(ii) ifA ⊆ A′, then(A) ⊇ (A′),

(iii) ◦ (henceforth,) is a closure operation on ⟨℘(V), ⊆⟩,5

(iv) ◦ (henceforth,) is a closure operation on ⟨℘(A), ⊆⟩,

(v) (A) is closed wrt,

(vi) (V ) is closed wrt , and

(vii)  and form an (order-inverting) isomorphism between the closed elements of℘(V) and
the closed elements of℘(A).

Proof. See [Ore, 1944, p. 494–496]. Further useful discussion can be found in [Bimbó
and Dunn, 2008; Birkhoff, 1967; Davey and Priestley, 2002; Dunn, 1991; Erné et al.,
1993].6

Another nice feature of the Galois tradition comes from its providing an abstract
soundness and completeness theorem for all monotonic sets of arguments (a connection
emphasised in, for example, [Dunn and Hardegree, 2001; Hardegree, 2005]). Say that
a setA of arguments is sound for a set of valuations V iffA ⊆ (V ) (i.e. if those argu-
ments are among the arguments consistent with that set of valuations), and complete
for it iff(V ) ⊆ A (i.e. if the set of arguments contains all the arguments which are
consistent with that set of valuations). As should be clear, these are by nomeans non-
standard uses of ‘sound’ and ‘complete’, even if they are a bitmore abstract than usual.
SoA is sound and complete for V iffA = (V )—that is, when it is precisely the set of
arguments with no counterexamples in that set of valuations.

It is a fact for anymonotonic setA thatA = (A)—in the parlance of the Galois
tradition, every monotonic set of arguments A is closed. (�is does not follow from

4 Galois connections come in antitone and monotone versions; we are here using the (original) antitone
version. �ese are essentially the same thing, however: a monotone Galois connection between S and T
is exactly an antitone Galois connection between S and the order-dual of T . For helpful discussion on this
difference, see [Dunn, 1991].

5A closure operation on a partially-ordered set ⟨S,≤⟩ is an operation C such that for everyX, Y ∈ S: 1)
X ≤ C(X); 2) ifX ≤ Y , then C(X) ≤ C(Y ); and 3) C(C(X)) ≤ C(X). (Equivalently, such that for every
X, Y ∈ S:X ≤ C(Y ) iffC(X) ≤ C(Y ).) AnX ∈ S is closedwrtC iffX = C(X).

6But note that [Davey and Priestley, 2002; Erné et al., 1993] use the monotone understanding of Galois
connection rather than the antitone one; recall footnote 4.
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, forming a Galois connection; all that ensures is the soundness direction. �is is
anadditional result. Formoreon this result see [FrenchandRipley, 201X,Section2.1].)
�is is the abstract soundness and completeness theorem: it gives us a systematicway,
givenamonotonic setA, of givinga set of valuations thatA is both soundandcomplete
for. �e set is (A).

Before moving to the other tradition we consider here, we pause to note that the
above presentation of the Galois tradition is a bit idiosyncratic. While the Galois tra-
dition itself is widely-explored, this exploration hasmainly (for example in [Dunn and
Hardegree, 2001; Hardegree, 2005; Humberstone, 2012; Shoesmith and Smiley, 1978])
stuck to the casewhere only the values⊤,⊥ are used. In that setting, all ofmonotonic-
ity, reflexivity, and complete transitivity are enforced. Extending the tradition to the
four-valued version we consider here is recent, and is the topic of [French and Rip-
ley, 201X]. (It is implicit in [Humberstone, 1988].) �is extension is also put to use in
[Ripley, 2018].

4 Malinowski Valuations

Bycontrast, theother traditionweconsiderhasbeenmoreflexible fromthebeginning.
It was developed initially in [Malinowski, 1990], to provide a valuational grip on nonre-
flexive sets of arguments. It has since been taken up in [Blasio et al., 2017; Frankowski,
2004], to work with nontransitive sets of arguments as well.

Like theGalois tradition, this other tradition,whichwecall theMalinowski tradition,
centres on themapwehave alreadymet fromsets of valuations to sets of arguments,
and provides an additionalmap going the other way, from sets of arguments to sets of
valuations. �e difference is in this additionalmap; theMalinowski tradition does not
use, but rather a differentmapwewill call. SinceGalois connections are uniquely
specifying, there can be no map from sets of valuations to sets of arguments Galois-
connected to other than  itself. Since is distinct, it is not Galois-connected to
.

To define, we begin from the notion of aMalinowski valuation.

Definition 4. Given any setA of Set-Fmla arguments and set Γ of formulas, theMa-
linowski valuationmΓA determined byA and Γ is the valuation such thatm

Γ
A(�) =

• ⊤ iff � ∈ Γ and [Γ ⊳ �] ∈ A

• ⊥⊤ iff � ∈ Γ and [Γ ⊳ �] ∉ A

• ⊥ iff � ∉ Γ and [Γ ⊳ �] ∉ A

• ∗ iff � ∉ Γ and [Γ ⊳ �] ∈ A

�is is defined as it is because of the following proposition:

Proposition 1. mΓA ⨳ [Σ ⊳ �] iff: Σ ⊆ Γ and [Γ ⊳ �] ∉ A.

Proof. LTR: Suppose thatmΓA⨳[Σ⊳�]. �is is the case iffmΓA[Σ] ⊆ {⊤,⊥⊤} andm
Γ
A(�) ∈

{⊥⊤,⊥}. From definition 4 we can see that mΓA( ) ∈ {⊤,⊥⊤} iff  ∈ Γ, and so Σ ⊆ Γ.
Similarly, asmΓA(�) ∈ {⊥⊤,⊥}, it follows that [Γ ⊳ �] ∉ A.
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RTL: Suppose that Σ ⊆ Γ and [Γ ⊳ �] ∉ A. It follows from definition 4 that, as
Σ ⊆ Γ thatmΓA(Σ) ⊆ {⊤,⊥⊤}, and as [Γ ⊳ �] ∉ A thatm

Γ
A(�) ∈ {⊥⊤,⊥}, from which it

follows thatmΓA ⨳ [Σ ⊳ �], as desired.

�e next proposition illustrates a connection between Malinowski valuations and
the information ordering ⊑ on valuations from fig. 1 (which, as mentioned above, is
lifted to an ordering onV pointwise).

Proposition 2. Fix someΓ ⊆  andA ⊆ A such that for some� ∈ we have [Γ⊳�] ∉ A.
�en, for any valuation v such that for all�, if [Γ⊳�] ∉ A then v⨳ [Γ⊳�], we havemΓA ⊑ v.

Proof. Suppose that for all �, if [Γ ⊳ �] ∉ A then it holds that v ⨳ [Γ ⊳ �]. Take an
arbitrary formula , to show thatmΓA( ) ⊑ v( ). We proceed by cases:

• If  ∈ Γ: By the fact that [Γ ⊳ �] ∉ Awemust have v[Γ] ⊆ {⊤,⊥⊤}. So the only
way mΓA( ) ̸⊑ v( ) is if mΓA( ) = ⊥⊤ and v( ) = ⊤. But if mΓA( ) = ⊥⊤, then it
must be that [Γ ⊳  ] ∉ A; and if v( ) = ⊤, then v is not a counterexample to
[Γ ⊳  ], contradicting our initial supposition about v.

• If  ∉ Γ: �en we know thatmΓA( ) ∈ {⊥, ∗}, so the only waym
Γ
A( ) ̸⊑ v( ) is

ifmΓA( ) = ⊥ and v( ) ∈ {⊤, ∗}. Sincem
Γ
A( ) = ⊥, we know that [Γ⊳ ] ∉ A.

But if v( ) ∈ {⊤, ∗} then it is not a counterexample to [Γ ⊳  ], contradicting
our initial supposition about v.

So it follows that, for every formula  , we havemΓA( ) ⊑ v( ), and thus thatmΓA ⊑ v
as desired.

Propositions 1 and2 tell us thatmΓA is auniversal counterexample to everyA-invalid
argument with premises Γ, and in addition that if there is any A-invalid argument
with those premises, thenmΓA is the information-least among all such universal coun-
terexamples.7 Since each Malinowski valuation counterexamples all A-invalid argu-
ments with a particular set of premises, we can be sure to have enough counterexam-
ples by considering each set of premises in turn and collecting up all their Malinowski
valuations. �is is just what the map does:

Definition 5. For any setA of arguments,A = {mΓA | Γ ⊆ }.

�e core of this idea is contained in the second claim of [Malinowski, 1990, Lemma
3.1]; a similar notion is defined in [Frankowski, 2008, �m. 5]. (Neither source con-
siders the full four-valued setup we use here; each uses a different set of three of the
values.) [Blasio et al., 2017] arrives at this exact approach.8 Note that, in contrast to the
Galois tradition, there is no obviousway to extend this idea to the Set-Set framework.

7Note that proposition 2 does not hold in cases where Γ is nonempty and explosive according toA in the
sense that for all�we have [Γ⊳�] ∈ A. In this casemΓA is just a characteristic function forΓ, assigning⊤ to
all formulas in Γ and ∗ to everything else. But in this case every valuation counterexamples everyA-invalid
argument whose premises are Γ (there are none!), so in particular the ⊑-least valuation v∗ which assigns ∗
to every formula does so. But as in this case (since Γ is nonempty)mΓA is not v∗ it is also not⊑-below it.

8What we write asmΓA, [Blasio et al., 2017] writes as
q
Γ, leavingA implicit; and what we write asA

they write asqA. See [Blasio et al., 2017, p. 239].
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(Indeed,when [Blasio et al., 2017]moves fromSet-Fmla toSet-Set, it alsomoves from
theMalinowski to the Galois tradition, without commenting on the change.)

One useful result in working with Malinowski valuations is the following, which
allows us to import results from the Galois tradition in reasoning about Malinowski
valuations.

Proposition 3. A is monotonic iffA ⊆ A.

Proof. LTR: We prove the contrapositive. So take any A, and suppose there is some
mΓA ∉ A; then there is some [Σ⊳�] ∈ AwithmΓA ⨳ [Σ⊳�]. Wemust havemΓA(�) ∈
{⊥⊤,⊥}, and so [Γ ⊳ �] ∉ A. But by proposition 1, Σ ⊆ Γ, and so A must not be
monotonic.

RTL: Again, we show the contrapositive. Suppose A is not monotonic; then there
are [Γ ⊳ �] ∈ A and [Γ′ ⊳ �] ∉ A with Γ ⊆ Γ′. Since [Γ′ ⊳ �] ∉ A, we have
mΓ′A ⨳ [Γ′ ⊳ �]. But then by proposition 1,mΓ′A ⨳ [Γ ⊳ �], and since [Γ ⊳ �] ∈ A, this
meansmΓ′A ∉ A.

One immediate similarity to theGalois tradition is in abstract soundness and com-
pleteness. For any monotonic A, we have A = (A), just as we had A = (A).
So, just as the Galois tradition does, the Malinowski tradition allows us to give a valu-
ational presentation of any monotonic set of arguments.

�eorem 2. If A is monotonic, then(A) = A. (See [Malinowski, 1990, �m. 3.2(i)],
[Frankowski, 2008,�m. 5], [Blasio et al., 2017,�m. 1].)

Proof. SupposeA is monotonic. �en by proposition 3,(A) ⊆ (A), so((A)) ⊆
((A)), and thusA ⊆ ((A)). Conversely, if [Γ⊳ �] ∉ A, thenmΓA ⨳ [Γ⊳ �] by
proposition 1, andmΓA ∈(A). So((A)) ⊆ A.

So, much like the Galois tradition, the Malinowski tradition gives us a systematic
way, given a monotonic set of arguments A, of providing a set of valuations that A is
both sound and complete for—in this case, the set being(A).

5 Comparing Sets of Valuations

As we’ve seen in the previous two sections, the Galois and Malinowski traditions both
provide uswith amethod for systematically associating a givenmonotonic set of argu-
ments with a set of valuations in such a way that we can prove an abstract soundness
and completeness result. What canwe say about the relationshipswhich hold between
these two different classes of valuations? What wewill do here is to compare these two
different sets of valuations by comparing them along the following, relatively natural,
dimensions.

• Inclusion.What relationships do the two sets of valuations stand in considered
as sets?

• Frameworks. Given that the Set-Set-framework is more expressive than the
Set-Fmla-framework, howdo the sets of Set-Setargumentswhich the two sets
of valuations determine compare?

8



• OrderRelations. How are the two sets of valuations related by our two ordering
relations on valuations: the information order⊑, and the truth order≼?

• Position in the Lattice of Classes of Valuations Determining A. Do these two
sets of valuations have interesting properties when considered as members of
Mod(A)—the collection of all sets of valuations determiningA?

�is is, of course, not an exhaustive list of the different respects in which we could
compare sets of valuations, but it will be enough for us to at least be able to glimpse
the fine texture of how the two traditions are related.

5.1 Inclusion

We will begin with the most natural way of comparing these two different classes of
valuations, namely as sets. Herewe have already seen in proposition 3 thatA ⊆ A
iffA ismonotonic. �ereason for this link tomonotonicity is interesting, andallowsus
to highlight an relationship between the Galois andMalinowski traditions. For any set
A of arguments, we have(A) ⊆ A ⊆ (A); and since can only ever deliver
monotonic sets of arguments, when A itself is not monotonic these subset relations
are proper. Indeed, just as(A) is A’s monotonic closure,(A) is its monotonic
interior. (See theorem 3.) �is is a less familiar notion than monotonic closure, but
just as well-defined: themonotonic interior ofA is themonotonicB ⊆ A such that all
monotonicC ⊆ Aare subsets ofB; just as themonotonic closureofA is themonotonic
B ⊇ A such that all monotonicC ⊇ A are supersets ofB.

�eorem 3. (A) = {[Σ ⊳ �] | [Γ ⊳ �] ∈ A, for everyΓ ⊇ Σ}

Proof. [Σ ⊳  ] ∈ (A) iff there is no Γ ⊆  with mΓA ⨳ [Σ ⊳  ]. By proposition 1,
this holds iff there is no Γ ⊇ Σ with mΓA ⨳ [Σ ⊳  ]. Since each such mΓA[Σ] ⊆ {⊤,⊥⊤},
this in turn holds iff there is no Γ ⊇ Σ with mΓA( ) ∈ {⊥,⊥⊤}. And this holds iff for
every Γ ⊇ Σ, [Γ ⊳  ] ∈ A, which is what we need.

5.2 Looking to Set-SetCounterparts

We take the idea of counterparts from [Shoesmith and Smiley, 1978, p. 72]:9

Definition 6. A set A of Set-Fmla arguments and a set B of Set-Set arguments are
counterparts iff for every Γ, �we have [Γ ⊳ �] ∈ A iff [Γ � �] ∈ B.

Given a set V of valuations, letss(V ) be the set of Set-Set arguments with no
counterexample in V . �en it is quick to see that(V ) andss(V ) are always coun-
terparts. To explore sets of valuations,ss is more discerning than: there are sets
V , V ′ such that(V ) = (V ′) butss(V ) ≠ ss(V ′). �e reverse is never the case.

Every monotonic A has at least one monotonic Set-Set counterpart: recall that
any suchA is(A), and considerss(A). But some have only one, and some have

9�is is not the definition given there, but amounts to the same and ismore convenient for our purposes
here.
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more. As it turnsoutwecanprecisely isolate the conditionsunderwhicha set ofmono-
tonicSet-Fmla arguments has a uniqueSet-Set counterpart, and thus the conditions
under which a set of arguments is compatible with a range of Set-Set counterparts.
Say that a set Γ of formulas isA-explosive iff we have [Γ ⊳ �] ∈ A for every formula �.
�en we have the following result:

Proposition 4. Suppose that a setA of monotonic Set-Fmla arguments is such that

• no set of formulas isA-explosive, and

• there is at most one formula�with [⊳�] ∉ A

�enA has at most onemonotonic Set-Set counterpart.

Proof. Toestablish that anAmeetingour conditionshas atmost one such counterpart,
note first that the ‘at most’ in the second condition can, in light of the first condition,
be treated as an ‘exactly’. (If there were no such �, every set Γ would beA-explosive.)
Consider any monotonic Set-Set counterpartsB andC ofA.

• Neither B nor C can include any empty conclusion arguments. Suppose one
did; say [Γ�] ∈ B. �en since B is monotonic, [Γ � �] ∈ B; and since B is a
counterpart of A, that would mean [Γ ⊳ �] ∈ A. But every  ≠ � already has
[⊳ ] ∈ A, and sinceA is monotonic, thatmeans [Γ⊳ ] ∈ A for each of these.
So Γ is A-explosive, and we have a contradiction. So B and C agree on empty
conclusion arguments, by excluding them all.

• B and C must agree with A, and hence with each other, on single conclusion
arguments.

• B andC must include all arguments [Γ�Δ]with |Δ| ≥ 2. Each such argument
contains some conclusion  ≠ �, and as we have [⊳ ] for all such formulas B
andC must both, as counterparts ofA, contain the argument [� ] and thus by
monotonicity [Γ � Δ].

SoB andC must agree everywhere, and so are identical.

Sets of argumentswhichmeet this condition are, admittedly, rather strange—they
contain a single formula � such that an argument is in that set just in case its conclu-
sion isn’t �. It turns out that these strange cases are the only sets of arguments which
have auniquemonotonicSet-Set counterpart; in every other case, theSet-Set frame-
work gives us a properly finer grip on our sets of valuations.

To see this, we need the notion of an exact counterexample:

Definition 7. Given a Set-Fmla argument a = [Γ ⊳  ], its exact counterexample va is
the valuation such that va( ) = ⊥ iff  ∉ Γ and ⊥⊤ iff  ∈ Γ, and for all formulas �
other than , va(�) = ⊤ iff � ∈ Γ and ∗ iff � ∉ Γ.

Proposition 5. Suppose that a setA of monotonic Set-Fmla arguments is such that either:

• there is someA-explosive set of formulasΓ, or
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• there are distinct formulas� and with [⊳�], [⊳ ] ∉ A.

�en there are setsV1, V2 of valuations with(V1) = (V2) = A butss(V1) ≠ ss(V2).

Proof. Let V1 = {va|a ∉ A}. First, we verify that(V1) = A. To see that(V1) ⊆ A,
take any argument a ∉ A, and note that va is a counterexample to a. To see thatA ⊆
(V1), take any argument [Γ ⊳ �] ∉ (V1). �ere must be some argument b ∉ A
with va ⨳ [Γ⊳�]. �at is, vamust assign everything in Γ some value from {⊤,⊥⊤} and
� either ⊥ or ⊥⊤. But by definition 7, this can only happen when [Γ ⊳ �] ⊑ a. SinceA
is monotonic and a ∉ A, it must be that [Γ ⊳ �] ∉ A.

So much for V1. To find V2:

• If there is an A-explosive set Γ, then let vΓ be the valuation which assigns ⊤ to
every  ∈ Γ, and∗ to all other formulas, and letV2 = V1∪{vΓ}. ClearlyvΓ⨳[Γ�].
It remains to be shown that (i) [Γ�] ∈ ss(V1) and (ii)(V2) = A. For (i) note
that the exact counterxample to an argument [Σ ⊳ �] is a counterexample to
[Γ�] iff Γ ⊆ Σ. Since Γ is A-explosive (and A is monotonic), every superset of
Γ is also A-explosive, so we cannot have Γ ⊆ Σ if [Σ ⊳ �] ∉ A. �us there is
no counterexample to [Γ�] in V1. For (ii) to fail, there would need to be some
[Σ⊳�] ∈ Awhere vΓ⨳ [Σ⊳�]. But vΓ is not a counterexample to any Set-Fmla
argument since it assigns no formulas⊥ or⊥⊤.

• If there are distinct � and  with [⊳�], [⊳ ] ∉ A, let v�, be the valuation
which assigns⊥ to� and , and∗ to all other formulas, and letV2 = V1∪{v�, }.
Clearly, v�, ⨳ [��,  ]. It remains to be shown that (i) [��,  ] ∈ ss(V1), and
(ii)(V2) = A. For (i) note that exact counterexamples to Set-Fmla arguments
never assign values from {⊥,⊥⊤} to more than one formula, so no exact coun-
terexample to a Set-Fmla argument is a counterexample to this argument. For
(ii) to fail, there would need to be some [Γ ⊳ �] ∈ A where v�, ⨳ [Γ ⊳ �]. But
the only Set-Fmla arguments which v�, counterexamples are [⊳�] and [⊳ ],
and we know that neither of those arguments are inA.

It is instructive to very briefly compare what we have shown here with what is
known about the case of sets of monotonic, reflexive and completely transitive sets
of arguments. In [Shoesmith and Smiley, 1978, p.73] it is shown that everymonotonic,
reflexive and completely transitive set of Set-Fmla arguments has at least two Set-
Set counterparts, while the above results show that this does not fully generalise to all
monotonic sets of Set-Fmla arguments. As it turns out, however, reflexivity is enough
to guarantee the condition of proposition 5; transitivity doesn’t seem to be involved
here.

Corollary 1. Suppose thatA is a monotonic and reflexive set of arguments. �en there are sets
V1, V2 of valuations with(V1) = (V2) = A butss(V1) ≠ ss(V2).

Proof. Every set A of monotonic and reflexive arguments must meet one of the two
conditions on proposition 5.
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To see this, suppose that there is at most one formula � for which [⊳�] ∉ A. If
there isn’t any such �, then the empty set is A-explosive and we’re done. If there is
such a �, by monotonicity and the fact that [⊳ ] ∈ A for every  ≠ �, it follows that
[� ⊳  ] ∈ A for all  ≠ �, and by reflexivity [� ⊳ �] ∈ A. So it follows that {�} is
A-explosive.

What the above results tell us is that looking to the connections between sets of
valuations and the Set-Set arguments brings into view differences which we cannot
register by just looking atSet-Fmla arguments, for almost anyAwemight care about.
As it turns out, considering the Set-Set framework helps us to see stronger connec-
tions between and. Not only do they both give us away to get a valuational grip on
anymonotonic Set-Fmla set of arguments, they do so in a way that matches perfectly
even when extended to the more discriminating Set-Set framework:

�eorem 4. For any set A of argumentsss(A) ⊆ ss(A). If A is monotonic, then
ss(A) = ss(A).

Proof. First claim: Suppose [Γ�Δ] ∉ ss(A). �en there is some valuation v ∈ A
with v ⨳ [Γ � Δ]. For every � ∈ Δ, this gives v ⨳ [Γ ⊳ �], so [Γ ⊳ �] ∉ A. �is in turn
means that for every � ∈ Δ, mΓA(�) ∈ {⊥⊤,⊥}. And we know that m

Γ
A[Γ] ⊆ {⊤,⊥⊤}; so

mΓA ⨳ [Γ � Δ]. �us, [Γ � Δ] ∉ ss(A).
Second claim: AssumeA is monotonic. �en by proposition 3,A ⊆ A, and so

by (the Set-Set-analogue of) theorem 1(ii) it follows thatss(A) ⊆ ss(A).

So  and are not just any ways to get at a set of Set-Fmla arguments; the dif-
ferent sets of valuations they deliver always select the same Set-Set counterpart to the
original Set-Fmla set.

5.3 Orderings on Valuations

Another way of comparing Galois andMalinowski valuations is by looking at how they
interact with the information and truth orderings, both individually and collectively.
We begin by looking at how Malinowski valuations interact with the information or-
dering, before going on to see howsets ofMalinowski andGalois valuations are related
by (the appropriate lifting of) the information and truth orderings.

Firstly, note that moving to stronger collections of arguments moves each Mali-
nowski valuation down in the information order.

Lemma 2. A ⊆ A′ iff for everyΓ ⊆ ,mΓA′ ⊑ m
Γ
A

Proof. LTR: By noting that⊤ ⊑ ⊥⊤ and ∗ ⊑ ⊥.
RTL: Suppose that the right hand side holds, and that [Σ⊳ �] ∉ A′ for some Σ, �.

�en mΣA′ ⨳ [Σ ⊳ �], so since m
Σ
A′ ⊑ mΣA, we have m

Σ
A ⨳ [Σ ⊳ �]. But this must mean

mΣA(�) ∈ {⊥⊤,⊥}, which holds only when [Σ ⊳ �] ∉ A.

�is result gives us the necessary tools to prove an analogue of theorem 1(ii), in
this case in terms of the information order, rather than subset ordering on valuations.
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To state this we will first need to lift the⊑ so that it relates, not just pairs of individual
valuations, butpairs of sets of valuations. Todo this,weusewhat in [Brink, 1993, p.184]
is called ⊑+—the power relational analogue of ⊑. More generally, given a relation R
between valuations, and sets of valuations V and V ′ let us say that V R+ V ′ iff (i) for
every v ∈ V there is a v′ ∈ V ′ such that v R v′, and (ii) for every v′ ∈ V there is a
v ∈ V such that v R v′. �en the analogue we have of theorem 1(ii) is the following.

�eorem 5. IfA is monotonic, thenA ⊆ A′ iffA′ ⊑+ A.

Proof. LTR: Suppose thatA ⊆ A′. Suppose that v′ ∈A′. Such a v′ = mΓA′ for some
Γ, and by lemma 2 it follows that v′ ⊑ mΓA which (by definition) is inA. Suppose
then that v ∈ A. �en v = mΓA for some Γ, and by lemma 2 it follows that m

Γ
A′ ⊑ v

andmΓA′ ∈A′ by definition. SoA′ ⊑+ A, as desired.
RTL: Suppose thatA′ ⊑+ A, and consider any argument [Γ ⊳ �] ∉ A′. (If

there is no such argument, we’re done.) �enmΓA′ ⨳ [Γ⊳�]. By our supposition, then,
there is some mΣA ∈ A s.t. mΓA′ ⊑ mΣA. It follows that m

Σ
A ⨳ [Γ ⊳ �] and so by

proposition 1 Γ ⊆ Σ and [Σ ⊳ �] ∉ A. SinceA is monotonic—this is the only place in
the proof this assumption is used—[Γ ⊳ �] ∉ A, as desired. SoA ⊆ A′.

Let us turn now to looking at how the information order relates Galois valuations
andMalinowski valuations.

Definition8. Given a valuation v, itsMalinowski premise setMv is {� | v(�) ∈ {⊤,⊥⊤}}.

Lemma 3. Given amonotonic setA of arguments and a v ∈ A, we have v ⊑ mMv
A .

Proof. Supposev ̸⊑ mMv
A . �en there is some�withv(�) ⋢ mMv

A (�). Either� ∈Mv or
not. If it is, then v(�) ∈ {⊤,⊥⊤}, andmMv

A (�) ∈ {⊤,⊥⊤}. So v(�) = ⊥⊤ andmMv
A (�) = ⊤.

By this last, [Mv ⊳ �] ∈ A; and so v ∉ A. If � ∉ Mv, then v(�) ∈ {⊥, ∗}, and
mMv
A (�) ∈ {⊥, ∗}. So v(�) = ⊥ and mMv

A (�) = ∗. By this last, [Mv ⊳ �] ∈ A; and so
v ∉ A.

So every valuation consistent with a given set of arguments is information-below
some Malinowksi valuation for that set of arguments, namely the Malinowski valua-
tion determined by that valuation’s premise set. �is gives us all the ingredients we
need for the following result.

�eorem 6. IfA is monotonic, thenA ⊑+ A.

Proof. Suppose that v ∈ A. By lemma 3 it follows that v ⊑ mMv
A , and mMv

A ∈ A.
Suppose, then, that v′ ∈ A. As A is monotonic by proposition 3 it follows that
v′ ∈ A and v′ ⊑ v′.

Interestingly lemma 3 also provides us with enough information to see how A
andA are related by the truth ordering.

�eorem 7. IfA is monotonic, thenA ≼+ A.
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Proof. Take any mΓA ∈ A. Since A is monotonic, we haveA ⊆ A by proposi-
tion 3. SomΓA ∈ A, and asmΓA ≼ m

Γ
A, we’re halfway there.

For the other half, take any v ∈ A, and considermMv
A . �e two valuations assign

a value in {⊤,⊥⊤} to exactly the same formulas, and by lemma 3, v ⊑ mMv
A . So for

any formula �, there are three possibilities: either v(�) = mMv
A (�), or v(�) = ∗ and

mMv
A (�) = ⊥, or v(�) = ⊤ and mMv

A (�) = ⊥⊤. In any of these three cases, though,
mMv
A (�) ≼ v(�). SomMv

A ≼ v, and thus there is a valuationm inAwithm ≼ v.

�e previous two theorems paint an interesting picture of how the two traditions
of valuations are related. For monotonic sets of arguments, the Malinowski approach
produces sets of valuations higher in the (power relation of the) information order,
while the Galois approach produces sets of valuations higher in the (power relation of
the) truth order.

5.4 Position in the Lattice of Classes of Valuations DeterminingA
Multiple different classes of valuations can determine the same set of arguments—the
Galois andMalinowski valuations being just two examples. Oneway of thinking about
how these two classes of valuations are related is to consider how they sit amongst the
collectionMod(A) of all A-determining classes of valuations.10 One obvious reason
forwonderingabout anypotential connectionhere is the fact that theGalois valuations
fill a natural place in this collection.

Proposition 6. A is the⊆-maximum element ofMod(A).

For monotonicA, we know from proposition 3 thatA is a member ofMod(A).
One natural question is whether it might be in some sense minimal inMod(A). As it
turns out, in the Set-Fmla-framework at least, we are essentially never guaranteed to
be able to find least sets of valuations consistent with a given set of arguments. In the
remainder of this section we demonstrate that this is the case, leaving the discussion
of the Set-Set cases, where least sets of valuations are much easier to come by, to the
appendix. Webeginby lookingatwhathappenswhenweare consideringbivaluations.
Second, we turn to the general situation involving tetravaluations. We follow up by
considering in turn both reflexive, as well as transitive trivaluations.

5.4.1 Bivaluations

We can use [Shoesmith and Smiley, 1978]’s work to help with the situation for least
sets of bivaluations in the Set-Fmla framework. In this section, we talk of Reflexive,
Monotonic, and completely Transitive sets of arguments as ‘RMT’ sets, to avoid taking
up too much space.

Proposition7. IfA is aSet-Fmla set of argumentsandB is anRMTSet-Set set of arguments,
thenA andB are counterparts iffA = sf2B.

10�at is to sayMod(A) = {V |A = (V )}.
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Proof. LTR: suppose A ≠ sf2B, to show that A and B are not counterparts. �en
there must be either some [Γ ⊳ �] ∈ A but not insf2B, or else some [Σ ⊳  ] ∈
sf2B but not inA. In the first case, since [Γ ⊳ �] ∉ sf2B, there must be some
v ∈ 2B with v ⨳ [Γ ⊳ �]. By the definition of ⨳, though, we have v ⨳ [Γ � �],
and so [Γ � �] ∉ B. �us, A and B are not counterparts. In the second case, since
[Σ ⊳  ] ∈ sf2B, there must be no v ∈ 2B with v ⨳ [Σ ⊳  ]. So, by the definition
of ⨳, there is no v ∈ 2B with v ⨳ [Σ �  ]. �us, [Σ �  ] ∈ ss2B. But since B is
RMT,B = ss2B. So [Σ �  ] ∈ B, and soA andB are not counterparts.

RTL: Suppose A = sf2B. Now consider any [Γ ⊳ �]. �is is in A iff it has no
counterexample in 2B, by our supposition. �is is true iff [Γ � �] has no counterex-
ample in 2B. And this, in turn, is true iff [Γ � �] ∈ ss2B. And (since B is RMT,
we knowB = ss2B, and so) this holds iff [Γ � �] ∈ B. �us,A andB are counter-
parts.

Corollary 4. If there is a set V of bivaluations withA = sfV andB = ssV , thenA and
B are counterparts.

Proof. V = 2ssV , soA = sf2ssV . SinceB = ssV , this givesA = sf2B.
From here, proposition 7 finishes the job.

�eorem 8. IfA is an RMT set of Set-Fmla arguments, then there is a least V such thatA =
sfV iff there is a greatest set of arguments among the RMT Set-Set counterparts toA.

Proof. LTR: Suppose there is a least such V ; we claim ssV is greatest among RMT
counterparts. It is quick to see that ssV is indeed an RMT counterpart: since it is
determined by a set of bivaluations, it must be RMT, and since V = 2ssV , we have
A = sf2ssV , so by proposition 7 it is a counterpart ofA.

It remains to show only that for any RMT counterpartB toAwe haveB ⊆ ssV .
So consider any such RMT counterpart B. Since it is a counterpart, by proposition 7,
A = sf2B. And since V is least among sets U of valuations withsfU = A, this
means V ⊆ 2B, and so (by antitonicity) ss2B ⊆ ssV . But since B is RMT,
B = ss2B, soB ⊆ ssB.

RTL: Suppose there is a greatest RMT counterpart B to A; we claim 2B is least
among sets U of valuations withsfU = A. Since B is an RMT counterpart to A, by
proposition 7sf2B = A.

It remains only to show that for any set U of bivaluations with sfU = A we
have 2B ⊆ U . So consider any U with sfU = A. By corollary 4 ssU must be
a counterpart to A, and since U contains only bivaluationsssU is RMT. Since B is
greatest among RMT counterparts to A, we have ssU ⊆ B, and so (by antitonic-
ity) 2B ⊆ 2ssU . But since U is a set of bivaluations, U = 2ssU , and so
2B ⊆ U .

�eorem 9. IfA is a compact RMT set of Set-Fmla arguments, then there is a least setV with
A = sfV .

Proof. [Shoesmith and Smiley, 1978,�m5.11] shows that a compact RMT Set-FmlaA
has a greatest RMT Set-Set counterpart. From there, apply theorem 8.

15



5.4.2 Tetravaluations

Unlike the bivaluational case, when it comes to tetravaluations there is in general no
guarantee that there will be a least set of valuations determining a given Set-Fmla set
of arguments, even if the set of arguments obeys quite restrictive conditions. Indeed,
as we will see, it is not even enough to consider sets of arguments that are both RMT
and compact.

Here is an example: consider a small language  = {p, q, r}, and the set of argu-
mentsA, whereA is the reflexive andmonotonic closure of {[p, q⊳r]}, which is to say
A = sfr3{[p, q ⊳ r]}.

11

�eorem 10. For thisA, there is no least setV of tetravaluations such thatsfV = A.

Proof. Let vx;y;z be the valuation assigning the value x to p, the value y to q,
and the value z to r, and consider the following two sets. �e first, V1, is
{v⊤;∗;⊥, v∗;⊤;⊥, v⊤;⊥;⊤, v⊥;⊤;⊤}. �e second, V2, is {v⊤;⊥;⊥, v⊥;⊤;⊥, v⊤;⊥;⊤, v⊥;⊤;⊤}.
(�ey differ in their first twomembers.)

Neither contains a counterexample to [p, q ⊳ r], since only v⊤;⊤;⊥ is such a coun-
terexample. SoVi ⊆ A, for i = 1, 2.

To make sure each set contains enough counterexamples, it suffices to check four
arguments: [p ⊳ r], [q ⊳ r], [p, r ⊳ q], and [q, r ⊳ p]; every argument not in A is a
subargument of one of these four. Both v⊤;∗;⊥ and v⊤;⊥;⊥ are counterexamples to the
first of these; both v∗;⊤;⊥ and v⊥;⊤;⊥ to the second; v⊤;⊥;⊤ to the third, and v⊥;⊤;⊤ to
the fourth. So each of V1 and V2 contains counterexamples to every argument not in
A; that is,A ⊆ Vi for i = 1, 2.

�us, V1 = V2 = A. As neither V1 nor V2 is contained in the other, the only
way for there to be a least V withV = Awould be for there to be some V ⊆ V1 ∩ V2
withV = A. But V1 ∩ V2 = {v⊤;⊥;⊤, v⊥;⊤;⊤}; this set contains no counterexample to
either [p⊳r] or [q⊳r]. So anyV ⊆ V1∩V2must be such that {[p⊳r], [q⊳r]} ⊆ (V ),
and soV ≠ A.

5.4.3 Reflexive trivaluations

�e same example as above suffices to settle the case for reflexive trivaluations via the
following Lemma.

Lemma 5. IfA is a reflexive set of arguments andV = A, thenV ⊆ Vr
3.

Proof. If V ⊈ Vr
3, then there is some v ∈ V and � ∈  with v(�) = ⊥⊤, and soV is

not reflexive.

�at is, all the tetravaluations we need to consider for any reflexive set of argu-
ments are reflexive trivaluations; the remaining tetravaluations don’t get involved. So
the above example already gives us a compact reflexive and monotonic set of argu-
ments with no least set of reflexive trivaluations determining it.

11For reference, thismeans thatA is the following set of arguments {[p⊳p], [q⊳q], [r⊳r], [p, q⊳p], [p, q⊳
q], [p, r ⊳ p], [p, r ⊳ r], [q, r ⊳ q], [q, r ⊳ r], [p, q, r ⊳ p], [p, q, r ⊳ q], [p, q, r ⊳ r], [p, q ⊳ r]}.
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5.4.4 Transitive trivaluations

For transitive trivaluations, however, we need a different example. �is is because,
even when a set A of arguments is completely transitive, we can still have A = V
even if V ⊈ Vt

3. So finding a completely transitive set with no least set of tetravalu-
ations determining it is not enough; there might yet be a least set of transitive trival-
uations. Moreover, we already know that if we have a set of arguments that is RMT
and compact, there will be a least set of transitive trivaluations determining it: since
the set is reflexive, it can only be determined by sets of reflexive trivaluations, and the
only valuations that are both reflexive trivaluations and transitive trivaluations are the
bivaluations, so this case reduces to the bivaluational case, inwhichweknowcompact-
ness suffices for a least such set.

What about nonreflexive sets, though? Here, an even simpler example than the
last one suffices to show that there are monotonic completely transitive compact sets
of Set-Fmla arguments with no least set of valuations determining them. Consider
a small language  = {p, q}, and the set of arguments A = {[p, q ⊳ q]}. �is set is
monotonic, completely transitive, and compact.

�eorem 11. For thisA, there is no least setV of transitive trivaluations such thatsfV = A.

Proof. Let vxy be the valuation assigning the value x to p and the value y to q, and
consider the following two sets. �e first, V3, is {v⊥⊤⊥, v

⊥
⊥⊤, v

⊥⊤
⊤}. �e second, V4, is

{v⊤⊥, v
⊥
⊥⊤, v

⊥⊤
⊤}. (�ey differ only in their first member.)12

Neither contains a counterexample to [p, q⊳q], since onlyv⊤⊥⊤ andv
⊥⊤
⊥⊤ are such coun-

terexamples. SoVi ⊆ A for i = 3, 4.
�ere are seven remaining Set-Fmla arguments in this language, but only three

need to be checked (since the other four are subarguments of these): [p ⊳ q], [q ⊳ q],
and [p, q ⊳p]. v⊥⊤⊥ and v

⊤
⊥ are both counterexamples to the first; v

⊥
⊥⊤ is a counterexample

to the second; and v⊥⊤⊤ is a counterexample to the third. So each of V1 and V2 contains
counterexamples to every argument not inA; that is,A ⊆ (Vi) for i = 3, 4.

�us, V3 = V4 = A. As neither V3 nor V4 is contained in the other, the only
way for there to be a least V withV = Awould be for there to be some V ⊆ V3 ∩ V4
withV = A. But V3 ∩V4 = {v⊥⊥⊤, v

⊥⊤
⊤}; this set contains no counterexample to [p⊳q].

So any V ⊆ V3 ∩ V4must be such that [p ⊳ q] ∈ V , and soV ≠ A.

Given the above results, then, it is clear that Malinowski valuations cannot be the
least set of valuations consistentwith a given set of arguments, as theremaynot be any
least set of valuations. �e next natural thing to wonder, then, is whether the setMali-
nowksi valuations are the least set of valuations when such a set exists. As it happens,
though, not even this is the case. To see this consider the language  = {p, q} again,
and new set of argumentsA′, whereA′ is themonotonic closure of the set {[⊳p]} (i.e.
A′ = {[⊳p], [p ⊳ p], [q ⊳ p], [p, q ⊳ p]}). �e set of Malinowski valuations for this set
of arguments are, letting vxy be the valuation assigning x to p and y to q, the following:

12It’s perhapsworth noting thatV3 consists only ofMalinowski valuations forA: it is {m
{p}
A , m{q}A , m{p,q}A }.

(�is is how this example was found.) However, it is notA, since it omitsm∅A = v
⊥
⊥.
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m∅A′ = v∗⊥

m{p}A′ = v⊤⊥

m{q}A′ = v∗⊥⊤

m{p,q}A′ = v⊤⊥⊤

Now by theorem 2 this set of valuations determinesA′. As it happens, though, this is
not the minimal set of valuations which determinesA′. To show this it will be helpful
to prove a general result which showswhy theMalinowski valuations for a set of argu-
ments are rarely guaranteed to be the minimal set of valuations determining that set
of arguments.

�eorem 12. Suppose thatS ⊆ A is a set of valuations such that for allm ∈ A there is
a v ∈ S such thatm ⊑ v. �enS ∈Mod(A).

Proof. First we show that(S) ⊆ A. Suppose that there is an a ∉ A. �en by theo-
rem 2 there is anm ∈A such thatm⨳ a. By the construction ofS, though, there is
a v ∈ S such thatm ⊑ v, so by fact 1 of French and Ripley [201X] it follows that v ⨳ a,
as desired.

Second we show that A ⊆ (S). If there is a v ∈ S such that v ⨳ a for some
argument a, then from the fact that S ⊆A it follows that there is anm ∈A (i.e.
v) such thatm ⨳ a, and so by theorem 2 it follows that a ∉ A.

To see how this applies in the above case note thatm{p,q}A′ (alias v⊤⊥⊤) is higher in the
information ordering than all the other members ofA′, and in this case (being a
single valuation) constitutes a minimal set of valuations determining A′. So even in
cases where minimal sets of valuations exist, they are likely to not be the Malinowski
valuations, as the full set ofMalinowski valuationswill often carry toomuch redundant
information.

6 Conclusion

�e Galois tradition and the Malinowski tradition are related in a number of subtle
ways. Each gives amethod of determining a set of valuations from a set of arguments,
in a way that suffices for an abstract soundness and completeness theorem. �eMali-
nowski tradition inparticular has quite a lot of internal texture. What the above results
seem to suggest is that in order to get a better grip on the Malinowski valuations the
place to look is at how they relate to the information order on valuations.
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sion and comments on this material. David Ripley’s contribution was partially sup-
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Ministerio de Economía, Industria y Competitividad, Government of Spain.
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Appendix: Least sets of valuations in the Set-Set frame-

work

Recall that, given a set A of arguments, there is a setMod(A) = {V ∶ V = A}.
ConsiderMod(A) as ordered by⊆. Nomatter whether we’re working Set-Set or Set-
Fmla, and no matter whether we’re considering V4, Vt

3, V
r
3, or V2,Mod(A) has a

greatest element: A. �is follows from theorem 1. What we want to answer in this
appendix is the followingquestion: underwhat conditionsdoes it have a least element?
In the body of the paper we dealt with the four Set-Fmla cases, and in this appendix
we’ll look at the remaining four Set-Set cases.

As above, we begin by looking at what happens when we are considering bivalua-
tions, since this is the best-known and best-explored area, and we can largely answer
our question by appealing to or adapting existing results. Second, we turn to the gen-
eral situation involving tetravaluations. We follow up by considering in turn both re-
flexive, as well as transitive trivaluations.

Bivaluations

It is known (for example [Dunn and Hardegree, 2001, p. 202]) that for any monotonic
reflexive completely transitive set of Set-Set arguments A there is exactly one set V
of bivaluations such thatssV = A. �at suffices to answer our question for this case:
there is always a least such V , since there is always exactly one such V .

Tetravaluations

�ings get trickier when we go to the tetravaluational case. Here, there can be mul-
tiple distinct V s with ssV = A. For example, for any nonempty V , ssV =
ss(V ∪ {v∗}), where v∗ is the valuation assigning ∗ to every formula. (�is is be-
cause v∗ is a counterexample only to the empty argument [�], and every valuation is a
counterexample to this argument.)

We will show that whenA is a compactmonotonic set of Set-Set arguments, then
there is a least set V of valuations with ssV = A. To do this, we first show that
there are certain valuations thatmust be in any V withssV = A; then we show that,
so long as A is compact, these valuations alone are enough to determine A precisely.
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�e needed valuations are the exact counterexamples to those arguments that are maxi-
mally out ofA. We define each of these notions inwhat follows, proving needed results
along the way. (We earlier defined the notion of exact counterexample for Set-Fmla ar-
guments, but here we need it for Set-Set.)

Definition 9. Given a Set-Set argument a = [Γ �Δ], its exact counterexample va is the
valuation such that va(�) =

• ⊤ iff � ∈ Γ ⧵ Δ,

• ⊥ iff � ∈ Δ ⧵ Γ,

• ⊥⊤ iff � ∈ Γ ∩ Δ, and

• ∗ iff � ∉ Γ ∪ Δ.13

Proposition 8. For any arguments a, b, we have va ⨳ b iff b ⊑ a.14

Proposition 9. For any argument a and any valuation v, we have v ⨳ a iff va ⊑ v.

Proof. Unpacking definitions, in both cases.

It follows from each of these results that va⨳a; an argument’s exact counterexam-
ple is indeed a counterexample. Proposition 8 gives us one sense in which this coun-
terexample is ‘exact’: it is a counterexample to all and only subsequents of a. Propo-
sition 9 gives us a different sense: it is information-least among counterexamples to
a.

Now, to arguments that are maximally out:

Definition 10. An argument ismaximally out of a setA of arguments iff: it is not inA
and any proper superargument of it is inA.

Lemma 6. IfA is a set of Set-Set arguments, and the argument c is maximally out ofA, then
for any setV of valuations withV = A it must be that vc ∈ V .

Proof. Take any such c, A, V , to show vc ∈ V . Since c ∉ A andV = A, there must
be some v ∈ V with v⨳ c. By proposition 9, vc ⊑ v. Suppose towards a contradiction
that v ≠ vc. �en there must be some formula � receiving a different value in v than
in vc. Since vc ⊑ v, there are five possibilities:

1. vc(�) = ∗ and v(�) = ⊤
13An anonymous referee called our attention to the similarity between this definition and the definition

of the function called ♭ in [Blasio et al., 2017, §5]. �ese are different functions put to different uses: va is
a function from the language to values, determined by a particular argument; while ♭ is a function from
other possible sets of values to our familiar four values, determined by a particular ‘B-matrix’ (see [Blasio
et al., 2017] for definition). We suspect the referee is onto something, and there may be value in pursuing
the analogy between formulas and arguments on the one hand, and other value spaces and B-matrices on
the other.

14In [French and Ripley, 201X], we used proposition 8 as our definition of exact counterexample, and
then used the valuations given in definition 9 to show that they always exist. Here, it’s convenient to take
the reverse approach.
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2. vc(�) = ∗ and v(�) = ⊥

3. vc(�) = ∗ and v(�) = ⊥⊤

4. vc(�) = ⊤ and v(�) = ⊥⊤

5. vc(�) = ⊥ and v(�) = ⊥⊤

But on any of these possibilities, v is a counterexample to some proper superargu-
ment of c: in the first, third, and fifth cases, the argument adds � to the conclusions
of c, while in the first, second, and fourth, it adds� to the premises. �ese are indeed
proper superarguments: definition 9, plus what we know about vc(�) in each case,
suffices for this. But since c is maximally out ofA, this superargument is inA, and so
V ≠ A, which is a contradiction. �us, v = vc, and so vc ∈ V .

So every V ∈ Mod(A)must include all the exact counterexamples to those argu-
ments maximally out ofA. �is matters whenA is compact because there are enough
arguments maximally out of it:

Proposition 10. IfA is compact, then every argument a ∉ A is contained in some argument c
that is maximally out ofA.

Proof. Take a compactA and some a ∉ A. Consider the setB = {b | a ⊑ b & b ∉ A}
of all superarguments of a that are not inA. Every⊑-chain inB has an upper bound in
B: if the chain is finite, its maximummember will do; and if it is infinite, its sequent
join will do. (Note that Compactness is needed at this step to ensure that these joins
are ∉ A). But then by Zorn’s lemma, B has a maximal element c. Since c ∈ B, we
know a ⊑ c and c ∉ A.

To show that c is maximally out of A, it remains only to show that any proper su-
perargument d of c is inA. But if there were some c ⋤ d where d ∉ A, then d would
have to have been inB, and so c would not be maximal inB after all.

�is is enough now for the theorem.

�eorem 13. IfA is a compact monotonic set of Set-Set arguments, then there is a least V ∈
Mod(A).

Proof. By lemma 6, any V ∈ Mod(A) must be such that V0 =
{vc | c is maximally out ofA} ⊆ V . So if V0 = A, then V0 ∈ Mod(A) and
we’re done. Showing this has two phases: thatV0 ⊆ A and thatA ⊆ V0.

First, thatV0 ⊆ A. Take any a ∉ A. By proposition 10, there is some cmaximally
outofAwitha ⊑ c. Since c ismaximally outofAwehavevc ∈ V0, andbyonedirection
of proposition 8 we have vc ⨳ a. So a ∉ V0.

Second, thatA ⊆ V0. Take any a ∉ V0; this has some counterexample vc ∈ V0.
By the other direction of proposition 8, a ⊑ c. But since c is maximally out of A, it is
at least out ofA; and sinceA is monotonic, a ∉ A.
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Reflexive trivaluations

If A is a reflexive set of arguments, then the general story carries over immediately,
owing to lemma 5. So when A is reflexive and compact, the least set of tetravalua-
tions determining A (which exists by theorem 13) is a set of reflexive trivaluations by
lemma 5, and thus a least set of reflexive trivaluations determiningA.

Transitive trivaluations

For transitive trivaluations, the reasoning is not so immediate, because there is no
result analogous to lemma 5 available for complete transitivity and transitive trival-
uations.15 But we can still make our way to the corresponding result; restricting our
attention to completely transitive sets of arguments gives us extra tools to work with.

Proposition 11. IfA is monotonic and completely transitive, and [Γ � Δ] is maximally out of
A, thenΓ ∪ Δ = .

Proof. Suppose A is monotonic and completely transitive, and [Γ � Δ] is maximally
out of A, but that Γ ∪ Δ ≠ . �en there must be some � ∈  with � ∉ Γ ∪ Δ. So
both [Γ �Δ, �] and [�,Γ �Δ] are proper superarguments of [Γ �Δ]. Since [Γ �Δ] is
maximally out of A, both of these superarguments must be in A. But then since A is
completely transitive, [Γ � Δ] ∈ A; contradiction.16

�is is now enough to proceed.

�eorem14. IfA is amonotonic, completely transitive, and compact set ofSet-Set arguments,
then there is a least setV of transitive trivaluations determining it.

Proof. As in the proof of theorem 13, the desired set is the set of exact counterexamples
to those arguments maximally out of A. As we have seen in that proof, this set is the
least set of tetravaluations determining A. So as long as it is itself a set of transitive
trivaluations, we’re done. By proposition 11, every [Γ � Δ]maximally out ofA is such
that Γ ∪ Δ = . Consulting definition 9 reveals that the exact counterexample to any
such argument cannot use the value ∗, and so is a transitive trivaluation.

15Indeed, 4A ⊈ Vt
3 unless 4A is empty, but so long asA is monotonic we have4A = A.

16�e full strength of complete transitivity wasn’t needed here; the weaker property [Shoesmith and Smi-
ley, 1978] calls ‘cut for formulas’ is enough. But since we’re only going to apply proposition 11 in cases where
we’re also assuming compactness, and since in the presence of compactness cut for formulas suffices for
complete transitivity, it wouldn’t be worth stating the slightly stronger formulation of proposition 11 that its
proof makes possible.
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